Severe, potentially life-threatening rashes have been reported in association with the use of lamotrigine, particularly in children. Accordingly, lamotrigine should be discontinued at the first sign of rash unless the rash is clearly not drug related (see DOSAGE AND ADMINISTRATION).

NAME OF THE MEDICINE
Lamotrigine.

Chemical Name: \(3,5\)-diamino-6-(2,3-dichlorophenyl)-1,2,4-triazine
Molecular Weight: 256.1
CAS Number: 84057-84-1

DESCRIPTION
APO-Lamotrigine tablets contain the active ingredient, lamotrigine.

Lamotrigine is a substituted asymmetric triazine. It is a white to pale cream coloured powder. It is slightly soluble in ethanol and chloroform, and very slightly soluble in water. The pKa of lamotrigine at 25°C is 5.7.

PHARMACOLOGY
The precise mechanism of the anticonvulsant action of lamotrigine is not certain. The results of neurochemical and electrophysiological studies with various \textit{in vitro} and \textit{in vivo} preparations indicate that lamotrigine can inhibit voltage gated sodium channels and reduce the release of glutamate, an excitatory amino acid implicated in the pathophysiology of epilepsy. It is possible that these effects underlie inhibition of the sustained repetitive firing of action potentials characteristic of neurones in epileptic foci, thereby limiting the spread of seizures.

In tests designed to evaluate the central nervous system effects of drugs, the results obtained using doses of 240 mg lamotrigine administered to healthy adult volunteers did not differ from placebo, whereas both 1000 mg phenytoin and 10 mg diazepam each significantly impaired fine visual motor coordination and eye movements, increased body sway and produced subjective sedative effects.

In another study, single oral doses of 600 mg carbamazepine significantly impaired fine visual motor coordination and eye movements, while increasing both body sway and heart rate, whereas results with lamotrigine at doses of 150 mg and 300 mg did not differ from placebo.
Pharmacokinetics

Absorption
In healthy volunteers, lamotrigine is rapidly and completely absorbed from the gut. The peak plasma concentration occurs 2.5 hours after oral drug administration.

Distribution
Lamotrigine is 55% bound to plasma proteins; it is unlikely that displacement from plasma proteins would result in toxicity. The volume of distribution is 0.92 to 1.22 L/kg.

Metabolism
Following multiple administrations of lamotrigine (150 mg twice daily) to normal volunteers there is a modest induction of its own metabolism. Based on the data available, however, there is no clinical evidence that lamotrigine induces mono-oxygenase enzymes to an extent that would cause important interactions with drugs metabolised by these enzymes.

Ninety-four percent of a radiolabelled dose of lamotrigine given to human volunteers was recovered in the urine over a period of 168 hours. Only 2% was recovered in the faeces. Lamotrigine is extensively metabolised in man and the major metabolite is an N-glucuronide, which accounts for 65% of the dose recovered in the urine. A further 8% of the dose is recovered in the urine as unchanged lamotrigine. High-performance liquid chromatography (HPLC) radiodetection revealed the presence of another N-glucuronide metabolite present at about one-tenth of the concentration of the major metabolite.

Elimination
The mean elimination half-life is 29 hours and the pharmacokinetic profile is linear up to 450 mg, the highest single dose tested. The half-life of lamotrigine is greatly affected by concomitant medication with a mean value of approximately 14 hours when given with enzyme inducing drugs such as carbamazepine and phenytoin, and increasing to a mean value of approximately 70 hours when co-administered with sodium valproate alone (see DOSAGE AND ADMINISTRATION and INTERACTIONS WITH OTHER MEDICINES).

Children (under 12 years)
Clearance adjusted for bodyweight is higher in children aged 12 years and under than in adults, with the highest values in children under 5 years. The half-life of lamotrigine is generally shorter in children than in adults with a mean value of approximately 7 hours when given with enzyme inducing drugs such as carbamazepine and phenytoin, and increasing to mean values of approximately 45 to 55 hours when co-administered with sodium valproate alone (see DOSAGE AND ADMINISTRATION).

Elderly (65 to 76 years)
Results of a population pharmacokinetic analysis including both young and elderly patients with epilepsy, enrolled in the same trials, indicated that the clearance of lamotrigine did not change to a clinically relevant extent. After single doses apparent clearance decreased by 12% from 35 mL/min at age 20 to 31 mL/min at 70 years. The decrease after 48 weeks of treatment was 10% from 41 to 37 mL/min between the young and elderly groups. In addition, pharmacokinetics of lamotrigine was studied in 12 healthy elderly subjects following a 150 mg single dose. The mean clearance in the elderly (0.39 mL/min/kg) lies within the range of the mean clearance values (0.31 to 0.65 mL/min/kg) obtained in 9 studies with non-elderly adults after single doses of 30 to 450 mg.

Renal Impairment
Twelve volunteers with chronic renal failure and another 6 individuals undergoing haemodialysis were each given a single 100 mg dose of lamotrigine. Mean CL/F were 0.42 mL/min/kg (chronic renal failure), 0.33 mL/min/kg (between haemodialysis), and 1.57 mL/min/kg (during haemodialysis) compared to 0.58 mL/min/kg in healthy volunteers. Mean plasma half-lives were 42.9 hours (chronic renal failure), 57.4 hours (between haemodialysis) and 13.0 hours (during haemodialysis), compared to 26.2 hours in healthy volunteers. On average, approximately 20% (range = 5.6 to 35.1) of the amount of lamotrigine present in the body was eliminated during a 4-hour haemodialysis session. For this patient population, initial doses of lamotrigine should be based on patients’ antiepileptic drugs (AEDs) regimen; reduced maintenance doses may be effective for patients with significant renal functional impairment (see PRECAUTIONS).
Hepatic Impairment

A single-dose pharmacokinetic study was performed in 24 subjects with various degrees of hepatic impairment and 12 healthy subjects as controls. The median apparent clearance of lamotrigine was 0.31, 0.24 or 0.10 mL/min/kg in patients with Grade A, B or C (Child-Pugh Classification) hepatic impairment, respectively, compared to 0.34 mL/min/kg in the healthy controls. Reduced doses should generally be used in patients with Grade B or C hepatic impairment (see **DOSAGE AND ADMINISTRATION**).

CLINICAL TRIALS

Adult Add-on Treatment of Partial and Generalised Seizures

The efficacy and safety of lamotrigine has been demonstrated in 6 double blind, placebo controlled, crossover studies (n=221) with duration of lamotrigine treatment ranging from 8-12 weeks, using doses up to 400 mg. Additionally, a double blind, placebo controlled, parallel study was performed of 2 fixed doses of lamotrigine (300 mg, n=71; 500 mg, n=72) versus placebo (n=73). The median percentage reduction in total seizure count on lamotrigine compared with placebo significantly favoured lamotrigine in 5 of the 6 crossover trials. Overall 23% (range 7-67%) of patients in the controlled crossover trials showed a ≥ 50% reduction in total seizures in lamotrigine compared with placebo. In the controlled parallel study, the median reduction (%) from baseline in total seizures during weeks 13-24 was 14% on placebo compared with 23% on lamotrigine 300 mg and 32% on lamotrigine 500 mg.

The difference from placebo was statistically significant for lamotrigine 500 mg but not for lamotrigine 300 mg. The commonest adverse experiences affected the central nervous system (ataxia, dizziness, and diplopia) and occurred more frequently on 500 mg lamotrigine than 300 mg lamotrigine in the controlled parallel study. Across the controlled trials, approximately 10% of patients on lamotrigine developed a rash compared with 5% on placebo, with approximately 3% of patients on lamotrigine withdrawing with this adverse experience.

Adult Monotherapy

Two 48 week, double blind, randomised, active controlled (carbamazepine and phenytoin respectively) clinical trials of lamotrigine monotherapy, in the treatment of newly diagnosed epilepsy, have been conducted. An additional randomised, active controlled (carbamazepine), open trial in this patient population has also been conducted. A total of 784 patients from these three studies were analysed (443 lamotrigine, 246 carbamazepine and 95 phenytoin). These studies indicate that the efficacy of lamotrigine monotherapy, in both generalised and partial seizures, may be comparable to that seen with carbamazepine and phenytoin. The escalation dose of lamotrigine in these studies that was associated with the lowest incidence of rash leading to withdrawal (2.2%) was 25 mg daily for the first two weeks, followed by 50 mg daily for the next two weeks, to achieve a maintenance dose of 100 to 200 mg/day by weeks 5-6 (see **INTERACTIONS WITH OTHER MEDICINES** and **ADVERSE EFFECTS**).

Paediatric Add-on Therapy

The safety and efficacy of lamotrigine has been demonstrated in 285 children with refractory epilepsy aged 2 to 12 years in 5 open add-on trials of 48 weeks duration. Lamotrigine appeared effective in both partial and generalised seizure types. Across all seizure types, 34% of patients experienced ≥ 50% reduction in seizures. The modal maintenance dose was 5-15 mg/kg for those not taking valproate and 1-5 mg/kg for those taking valproate. 7% of patients discontinued lamotrigine with a rash. In patients on concomitant valproate, 2% withdrew with a rash when their daily dose of lamotrigine in the first week of treatment was ≤ 0.5 mg/kg compared with 13% withdrawn with rash at an initial dose of lamotrigine > 0.5 mg/kg. 155 patients aged 2 to 18 years (123 patients aged 12 years or under) continued to receive lamotrigine for up to 4 years. 4% of these patients withdrew because of adverse experiences. Lamotrigine had no effect on expected normal weight and height increase when taken for periods of up to 4 years.

Lennox-Gastaut Syndrome

Lamotrigine may be of benefit as add-on therapy for seizures associated with Lennox-Gastaut Syndrome. One double blind, placebo controlled, add-on, parallel study has been performed in patients aged 3 to 25 years with Lennox-Gastaut syndrome. These patients were being treated with a combination of up to 3 antiepileptic drugs including carbamazepine, clobazam, clonazepam, diazepam, ethosuximide, lorazepam, nitrazepam, oxcarbazepine, phenobarbitone, primidone, phenytoin, sodium valproate or vigabatrin. There are no data available on the use of lamotrigine as the sole drug treatment of Lennox-Gastaut Syndrome. No single drug is likely to be of benefit.
After a 4 week run in period, patients (age range 2-28 years) were randomised to receive either lamotrigine (n=79) (age range 3-25) or placebo (n=90) for 16 weeks (including dose escalation period in the first 6 weeks of treatment) in addition to their existing therapy. Addition of lamotrigine to existing therapy resulted in a median reduction in counts of major motor seizures (drop attacks and tonic-clonic seizures) of 32% compared with a reduction of 9% in patients on existing therapy with add-on placebo. The results were also significantly in favour of lamotrigine when drop attacks and generalised tonic-clonic seizures were analysed separately, but not for atypical absence seizures. Rash was recorded in 7/79 lamotrigine add-on patients versus 4/90 placebo add-on patients. 4% of add-on lamotrigine patients and 8% of add-on placebo patients were withdrawn with adverse experiences. 3% discontinued lamotrigine because of rash compared with 1% on placebo. In the lamotrigine group, one patient was hospitalised because of rash and a second was reported to have developed Stevens-Johnson syndrome but did not require hospitalisation. 4% of patients on placebo and no patients on lamotrigine were withdrawn because of worsening seizures.

INDICATIONS

Lamotrigine is an antiepileptic drug for the treatment of partial and generalised seizures in adults and children.

There is extensive experience with lamotrigine used initially as "add-on" therapy. The use of lamotrigine has also been found to be effective as monotherapy following withdrawal of concomitant antiepileptic drugs.

Initial monotherapy treatment in newly diagnosed paediatric patients is not recommended (see CLINICAL TRIALS).

CONTRAINDICATIONS

Lamotrigine is contraindicated in individuals with known hypersensitivity to lamotrigine, or to any other ingredient in lamotrigine tablets (see PRESENTATION AND STORAGE CONDITIONS).

PRECAUTIONS

Skin Rash

SEE BOXED WARNING REGARDING THE RISK OF SEVERE, POTENTIALLY LIFE-THREATENING RASH ASSOCIATED WITH THE USE OF LAMOTRIGINE.

There have been reports of adverse skin reactions, which have generally occurred within the first 8 weeks after commencing lamotrigine treatment. The majority of rashes are mild and self-limiting, however serious rashes, requiring hospitalisation and discontinuation of lamotrigine, have been reported. These have included potentially life-threatening rashes such as Stevens Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) (see ADVERSE EFFECTS). Although benign rashes also occur with lamotrigine, it is not possible to predict reliably which rashes will prove to be life threatening.

In adults enrolled in studies utilising the current lamotrigine dosing recommendations the incidence of serious skin rashes is approximately 1 in 500 in epilepsy patients. Approximately half of these cases have been reported as SJS (1 in 1000).

The risk of serious skin rashes is higher in children than in adults. Available data from a number of studies suggest that the incidence of rashes associated with hospitalisation in children is from 1 in 300 to 1 in 100.

In children, the initial presentation of a rash can be mistaken for an infection. Doctors/physicians should consider the possibility of a drug reaction in children that develop symptoms of rash and fever during the first eight weeks of therapy.

Additionally the overall risk of rash appears to be strongly associated with:

- High initial doses of lamotrigine and exceeding the recommended dose escalation of lamotrigine therapy (see DOSAGE AND ADMINISTRATION).
• Concomitant use of valproate, which increases the mean half-life of lamotrigine nearly two fold (see DOSAGE AND ADMINISTRATION).

Caution is also required when treating patients with a history of allergy or rash to other antiepileptic drugs as the frequency of non-serious rash after treatment with lamotrigine was approximately three times higher in these patients than in those without such history.

All patients (adults and children) who develop a rash should be promptly evaluated and lamotrigine withdrawn immediately unless the rash is clearly not drug related. It is recommended that lamotrigine not to be restarted in patients who have discontinued due to rash associated with prior treatment with lamotrigine unless the potential benefit clearly outweighs the risk.

Rash has also been reported as part of a hypersensitivity syndrome associated with a variable pattern of systemic symptoms including fever, lymphadenopathy, facial oedema and abnormalities of the blood and liver. The syndrome shows a wide spectrum of clinical severity and may, rarely, lead to disseminated intravascular coagulation (DIC) and multi-organ failure. It is important to note that early manifestations of hypersensitivity (e.g. fever, lymphadenopathy) may be present even though rash is not evident. If such signs and symptoms are present the patient should be evaluated immediately and lamotrigine should be discontinued if an alternative aetiology cannot be established.

As with other antiepileptic drugs or the treatment of epilepsy, abrupt withdrawal of lamotrigine may provoke rebound seizures. Unless safety concerns (for example, serious skin reactions) require an abrupt withdrawal, the dose of lamotrigine should be gradually decreased over a period of two weeks.

When concomitant antiepileptic drugs are withdrawn to achieve lamotrigine monotherapy or other antiepileptic drugs are added-on to lamotrigine monotherapy, considerations should be given to the effect this may have on lamotrigine pharmacokinetics (see INTERACTIONS WITH OTHER MEDICINES).

Suicide Risk
Symptoms of depression and/or bipolar disorder may occur in patients with epilepsy, and there is evidence that patients with epilepsy and bipolar disorder have an elevated risk for suicidality.

Twenty-five to 50% of patients with bipolar disorder attempt suicide at least once, and may experience worsening of their depressive symptoms and/or emergence of suicidal ideation and behaviours (suicidality) whether or not they are taking medications for bipolar disorder, including lamotrigine.

The incidence of suicidal ideation and behaviour was evaluated in a pooled analysis of placebo-controlled clinical trials with lamotrigine involving a total of 6467 patients from a number of indications, including studies in epilepsy and bipolar disorder.

In the sub-set of bipolar disorder trials, the rate of events was numerically, but not statistically significant, greater for lamotrigine (29/1212 [2.4%]) compared with placebo (19/1054 [1.8%]). In a pooled analysis of psychiatric indications, events were more common in the first month of treatment, in patients taking lamotrigine. Behavioural events were more common in males.

In the sub-set of epilepsy trials, there were no statistically significant differences in the rate of events between lamotrigine and placebo. Although the number of suicidal ideation and behaviour was too low (6/1073 [0.6%] on lamotrigine and 2/805 [0.3%] on placebo) to allow meaningful comparison between treatment groups, the relative rate reported from this lamotrigine analysis is consistent with a possible class effect reported by the US Food and Drug Administration, based on their meta-analysis of 11 anticonvulsant drugs including lamotrigine.
Suicidal Behaviour and Ideation

Antiepileptic drugs (AEDs), including lamotrigine, increase the risk of suicidal thoughts or behaviour in patients taking these drugs for any indication. Patients treated with any AED for any indication should be monitored for the emergence or worsening of depression, suicidal thoughts or behaviour, and/or any unusual changes in mood or behaviour.

Pooled analyses of 199 placebo-controlled clinical trials (mono- and adjunctive therapy) of 11 different AEDs showed that patients randomised to one of the AEDs had approximately twice the risk (adjusted Relative Risk 1.8, 95% CI:1.2, 2.7) of suicidal thinking or behaviour compared to patients randomised to placebo. In these trials, which had a median treatment duration of 12 weeks, the estimated incidence rate of suicidal behaviour or ideation among 27,863 AED-treated patients was 0.43%, compared to 0.24% among 16,029 placebo-treated patients, representing an increase of approximately one case of suicidal thinking or behaviour for every 530 patients treated. There were four suicides in drug-treated patients in the trials and none in placebo-treated patients, but the number is too small to allow any conclusion about drug effect on suicide.

The increased risk of suicidal thoughts or behaviour with AEDs was observed as early as one week after starting drug treatment with AEDs and persisted for the duration of treatment assessed. Because most trials included in the analysis did not extend beyond 24 weeks, the risk of suicidal thoughts or behaviour beyond 24 weeks could not be assessed.

The risk of suicidal thoughts or behaviour was generally consistent among drugs in the data analysed. The finding of increased risk with AEDs of varying mechanisms of action and across a range of indications suggests that the risk applies to all AEDs used for any indication. The risk did not vary substantially by age (5-100 years) in the clinical trials analysed. Table 1 shows absolute and relative risks by indication for all evaluated AEDs.

Table 1 Risk by indication for antiepileptic drugs in the pooled analysis

<table>
<thead>
<tr>
<th>Indication</th>
<th>Placebo Patients with Events Per 1000 Patients</th>
<th>Drug Patients with Events Per 1000 Patients</th>
<th>Relative Risk: Incidence of Events in Drug Patients/Incidence in Placebo Patients</th>
<th>Risk Difference: Additional Drug Patients with Events Per 1000 Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epilepsy</td>
<td>1.0</td>
<td>3.4</td>
<td>3.5</td>
<td>2.4</td>
</tr>
<tr>
<td>Psychiatric</td>
<td>5.7</td>
<td>8.5</td>
<td>1.5</td>
<td>2.9</td>
</tr>
<tr>
<td>Other</td>
<td>1.0</td>
<td>1.8</td>
<td>1.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Total</td>
<td>2.4</td>
<td>4.3</td>
<td>1.8</td>
<td>1.9</td>
</tr>
</tbody>
</table>

The relative risk for suicidal thoughts or behaviour was higher in clinical trials for epilepsy than in clinical trials for psychiatric or other conditions, but the absolute risk differences were similar for the epilepsy and psychiatric indications.

Anyone considering prescribing lamotrigine or any other AED must balance this risk with the risk of untreated illness. Epilepsy and many other illnesses for which AEDs are prescribed are themselves associated with morbidity and mortality and an increased risk of suicidal thoughts and behaviour. Should suicidal thoughts and behaviour emerge during treatment, the prescriber needs to consider whether the emergence of these symptoms in any given patient may be related to the illness being treated.

Patients, their caregivers and families should be informed that AEDs increase the risk of suicidal thoughts and behaviour and should be advised of the need to be alert for the emergence of worsening of the signs and symptoms of depression, any unusual changes in mood or behaviour, or the emergence of suicidal thoughts, behaviour or thoughts about self-harm. Behaviours of concern should be reported immediately to the treating doctor.
Hormonal Contraceptives

Effects of Hormonal Contraceptives on Lamotrigine Efficacy

An ethinylestradiol/levonorgestrel (30 μg/150 μg) combination has been demonstrated to increase the clearance of lamotrigine by approximately two-fold resulting in decreased lamotrigine levels (see INTERACTIONS WITH OTHER MEDICINES). Following titration, higher maintenance doses of lamotrigine (by as much as two-fold) may be needed to attain a maximal therapeutic response. In women not already taking an inducer of lamotrigine glucuronidation and taking a hormonal contraceptive that includes one week of inactive medication (e.g. “pill-free week”), gradual transient increases in lamotrigine levels will occur during the week of inactive medication. These increases will be greater when lamotrigine dose increases are made in the days before or during the week of inactive medication. For dosing instructions see “General Dosing Recommendations in Special Patient Populations” section in DOSAGE AND ADMINISTRATION.

Clinicians should exercise appropriate clinical management of women starting or stopping hormonal contraceptives during lamotrigine therapy and lamotrigine dosing adjustments may be needed.

Other oral contraceptive and HRT treatments have not been studied, though they may similarly affect lamotrigine pharmacokinetic parameters (see “General Dosing Recommendations in Special Patient Populations” section (for dosing instructions for women taking hormonal contraceptives) in DOSAGE AND ADMINISTRATION and “Hormonal contraceptives” section in PRECAUTIONS).

Effects of Lamotrigine on Hormonal Contraceptive Efficacy

An interaction study in 16 healthy volunteers has shown that when lamotrigine and a hormonal contraceptive (ethinylestradiol/levonorgestrel combination) are administered in combination, there is a modest increase in levonorgestrel clearance and changes in serum FSH and LH (see INTERACTIONS WITH OTHER MEDICINES). The impact of these changes on ovarian ovulatory activity is unknown. However, the possibility of these changes resulting in decreased contraceptive efficacy in some patients taking hormonal preparations with lamotrigine cannot be excluded. Therefore patients should be instructed to promptly report changes in their menstrual pattern, i.e. breakthrough bleeding.

Dihydrofolate Reductase

Lamotrigine is a weak inhibitor of dihydrofolate reductase, hence there is a possibility of interference with folate metabolism during long-term therapy. During prolonged human dosing, however, lamotrigine did not induce significant changes in the haemoglobin concentration, mean corpuscular volume, or serum or red blood cell folate concentrations up to 1 year, or red blood cell folate concentrations up to 5 years.

Renal Failure

In single dose studies in subjects with end stage renal failure, plasma concentrations of lamotrigine were not significantly altered. However, accumulation of the glucuronide metabolite is to be expected; caution should, therefore, be exercised in treating patients with renal failure.

Hepatic Impairment

Lamotrigine is cleared primarily by metabolism in the liver. Lamotrigine should be administered with caution in patients with hepatic impairment as clearance is reduced (see “Hepatic Impairment” section in DOSAGE AND ADMINISTRATION).

There are reports in the literature that severe convulsive seizures including status epilepticus may lead to rhabdomyolysis, multi-organ failure and disseminated intravascular coagulation, sometimes with a fatal outcome. Similar cases have occurred in association with the use of lamotrigine.

Patients Taking Other Lamotrigine Containing Preparations

Lamotrigine should not be administered to patients currently being treated with any other preparation containing lamotrigine without consulting a doctor.

Effects on Fertility

Fertility was reduced following oral administration of lamotrigine to male and female rats at a dose eliciting signs of toxicity (20 mg/kg/day). There is no experience of the effect of lamotrigine on human fertility.
Use in Pregnancy (Category D)
Lamotrigine should not be used in pregnancy unless, in the opinion of the physician, the potential benefits of treatment to the mother outweigh any possible risks to the developing foetus.

Post-marketing data from several prospective pregnancy registries have documented outcomes in over 2,000 women exposed to lamotrigine monotherapy during the first trimester of pregnancy. The North American Antiepileptic Drug Pregnancy (NAAED) Registry has reported a marked and statistically significant increase in the rate of isolated oral cleft malformations. The observed prevalence of oral clefts was 24 fold higher than in the Brigham and Women's Hospital (BWH) birth malformation surveillance programme, the reference population for the registry. Overall, the NAAED registry identified five cases of oral clefts in 564 exposed women giving a prevalence rate of 8.9/1,000.

In a pooled analysis of other pregnancy registries, the rate of isolated oral clefts with lamotrigine monotherapy was 4 in 2,226 giving a prevalence rate of 1.79/1,000. This prevalence is at the upper end of, but does not exceed, the rates for general population prevalence reported in the literature.

Physiological changes during pregnancy may affect lamotrigine levels and/or therapeutic effect. There have been reports of decreased lamotrigine levels during pregnancy. Appropriate clinical management of pregnant women during lamotrigine therapy should be ensured.

Lamotrigine is a weak inhibitor of dihydrofolate reductase and studies in rats have shown a decrease in folic acid during pregnancy. There is a theoretical risk of human foetal malformations when the mother is treated with a folate inhibitor during pregnancy.

It is recommended that women on antiepileptic drugs receive pre-pregnancy counselling with regard to the risk of foetal abnormalities. Women who are planning to become pregnant, or who are pregnant, while being treated with lamotrigine should take a folate supplement before conception and for the first 12 weeks of pregnancy, for example 5 mg of folate daily. Specialist prenatal diagnosis including detailed mid-trimester ultrasound should be offered to pregnant women.

Notwithstanding the potential risks, no sudden discontinuation of antiepileptic therapy should be undertaken, as this may lead to breakthrough seizures which could have serious consequences for both the mother and the foetus. Antiepileptic drugs should be continued during pregnancy and monotherapy should be used if possible at the lowest effective dose as risk of abnormality is greater in women taking combined medication. The risk to the mother and foetus of uncontrolled epilepsy should be considered when deciding on treatment options.

Reproductive toxicology studies with lamotrigine in mice, rats and rabbits at doses up to 100 mg/kg/day, 25 mg/kg/day and 30 mg/kg/day, respectively, did not reveal a clear teratogenic effect. An increased incidence of poorly ossified skeletal elements and rib anomalies, foetal weight decreases, prolonged gestation, fewer pups, increased incidence of still births, and reduced pup viability during lactation were observed in rats following administration of up to 25mg/kg/day. These foetotoxic effects may have been due to maternal toxicity.

Use in Lactation
There is limited information on the use of lamotrigine in lactation. Preliminary data indicate that lamotrigine passes into breast milk in concentrations usually of the order of 40-60% of the plasma concentration. In a small number of infants known to have been breastfed, the plasma concentrations of lamotrigine reached levels at which pharmacological effects may occur. The potential benefits of breast-feeding should be weighed against the potential risk of adverse effects occurring in the infant.

Lamotrigine and/or its metabolites pass into the milk of lactating rats (approximately 5% of the dose was transferred to the litter). Oral administration of lamotrigine 20 mg/kg/day to rats during late gestation and lactation was associated with reduced pup viability, concomitant with signs of maternal toxicity.

Carcinogenicity
There was no evidence of carcinogenicity following daily oral administration of lamotrigine to mice and rats for up to two years at doses of up to 30 and 10 mg/kg respectively.

Genotoxicity
Lamotrigine was not genotoxic in assays for gene mutation or chromosomal damage.
Effect on Ability to Drive or Operate Machinery

Two volunteer studies have demonstrated that the effect of lamotrigine on fine visual motor co-ordination, eye movements, body sway and subjective sedative effects did not differ from placebo. In clinical trials with lamotrigine, adverse effects of a neurological nature, such as dizziness and blurred vision, have been reported. Therefore, patients should see how lamotrigine therapy affects them before driving or operating machinery.

As there is individual variation in response to all antiepileptic drug therapy, patients should consult their doctor on the specific issues of driving and epilepsy before commencing treatment.

INTERACTIONS WITH OTHER MEDICINES

UDP-glucuronyl transferases have been identified as the enzymes responsible for metabolism of lamotrigine. There is no evidence that lamotrigine causes clinically significant induction or inhibition of hepatic oxidative drug-metabolising enzymes, and interactions between lamotrigine and drugs metabolized by cytochrome P450 enzymes are unlikely to occur. Lamotrigine may induce its own metabolism but the effect is modest and unlikely to have significant clinical consequences.

<table>
<thead>
<tr>
<th>Drugs that significantly inhibit glucuronidation of lamotrigine</th>
<th>Drugs that significantly induce glucuronidation of lamotrigine</th>
<th>Drugs that do not significantly inhibit or induce glucuronidation of lamotrigine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valproate</td>
<td>Carbamazepine</td>
<td>Litium**</td>
</tr>
<tr>
<td></td>
<td>Phenytoin</td>
<td>Bupropion</td>
</tr>
<tr>
<td></td>
<td>Primidone</td>
<td>Olanzapine</td>
</tr>
<tr>
<td></td>
<td>Phenobarbitone</td>
<td>Oxcarbazepine</td>
</tr>
<tr>
<td></td>
<td>Rifampicin</td>
<td>Felbamate</td>
</tr>
<tr>
<td></td>
<td>Lopinavir/ritonavir</td>
<td>Gabapentin</td>
</tr>
<tr>
<td></td>
<td>Ethinyloestradiol/levonorgestrel combination*</td>
<td>Levetiracetam</td>
</tr>
</tbody>
</table>

* Other oral contraceptive and HRT treatments have not been studied, though they may similarly affect lamotrigine pharmacokinetic parameters (see “General Dosing Recommendations in Special Patient Populations” section (for dosing instructions for women taking hormonal contraceptives) in DOSAGE AND ADMINISTRATION and “Hormonal contraceptives” section in PRECAUTIONS).

** Lithium is unlikely to inhibit or induce glucuronidation of lamotrigine.

Approximately 96% of a given dose of lamotrigine is eliminated by conjugation metabolism mediated by glucuronyl-transferases. Cytochrome P450 is not involved in the elimination of lamotrigine to any significant extent. Therefore the likelihood that lamotrigine inhibits the elimination of drugs metabolised by cytochrome P450 is low.
Interactions Involving Antiepileptic Drugs

Antiepileptic drugs (such as phenytoin, carbamazepine, phenobarbitone and primidone), which induce hepatic drug-metabolising enzymes, enhance the metabolism of lamotrigine (see DOSAGE AND ADMINISTRATION). Other drug-classes, which induce hepatic drug-metabolising enzymes, may also enhance the metabolism of lamotrigine.

Sodium valproate, which competes with lamotrigine for hepatic drug metabolising enzymes, reduces the metabolism of lamotrigine and increases the mean half life of lamotrigine nearly two-fold (see PRECAUTIONS and DOSAGE AND ADMINISTRATION).

There have been reports of central nervous system events including ataxia, blurred vision, diplopia, dizziness and nausea in patients taking carbamazepine following the introduction of lamotrigine. These events usually resolve when the dose of carbamazepine is reduced. A similar effect was seen during a study of lamotrigine and oxcarbazepine in healthy adult volunteers, but dose reduction was not investigated.

In a steady-state pharmacokinetic interaction study in healthy adult volunteers using daily doses of 200 mg lamotrigine and 1200 mg oxcarbazepine, oxcarbazepine did not alter the metabolism of lamotrigine and lamotrigine did not alter the metabolism of oxcarbazepine.

In a study of healthy volunteers, coadministration of felbamate (1,200 mg twice daily) with lamotrigine (100 mg twice daily for 10 days) appeared to have no clinically relevant effects on the pharmacokinetics of lamotrigine. However, the incidence of adverse effects was higher during combination therapy (90%) that during lamotrigine and placebo (48%). Adverse effects were predominantly related to the central nervous system or gastrointestinal tract, including dizziness, headache and nausea.

Based on a retrospective analysis of plasma levels in patients who received lamotrigine both with and without gabapentin, gabapentin does not appear to change the apparent clearance of lamotrigine.

Potential drug interactions between levetiracetam and lamotrigine were assessed by evaluating serum concentrations of both agents during placebo-controlled clinical trials. These data indicate that levetiracetam does not influence the pharmacokinetics of lamotrigine.

Steady state trough plasma concentrations of lamotrigine were not affected by concomitant pregabalin (200 mg 3 times daily) administration.

In a study of patients with epilepsy, coadministration of zonisamide (200 to 400 mg/day) with lamotrigine (150 to 500 mg/day) for 35 days had no significant effect on the pharmacokinetics of lamotrigine. Increases in serum concentrations of zonisamide, leading to symptoms and signs of zonisamide toxicity, have been reported when lamotrigine was added to previously stable zonisamide therapy.

Increases in plasma concentrations of other antiepileptic drugs have been reported in a few patients, however controlled studies have shown no evidence that lamotrigine affects the plasma concentrations of concomitant antiepileptic drugs. Evidence from in vitro studies indicates that lamotrigine does not displace other antiepileptic drugs from protein binding sites.

Interactions Involving Other Psychoactive Agents

The pharmacokinetics of lithium after 2 g of anhydrous lithium gluconate given twice daily for six days to 20 healthy subjects were not altered by co-administration of 100 mg/day lamotrigine.

In a steady-state pharmacokinetic interaction study in healthy adult volunteers, daily doses of 15 mg olanzapine reduced the AUC and Cmax of 200 mg lamotrigine by an average of 24% and 20%, respectively. An effect of this magnitude is not generally expected to be clinically relevant. Lamotrigine at 200 mg daily dose did not affect the pharmacokinetics of olanzapine.

Multiple oral doses of lamotrigine 400 mg daily had no clinically significant effect on the single dose pharmacokinetics of 2 mg risperidone in 14 healthy volunteers. However, 12 out of the 14 volunteers reported somnolence compared to 1 out of 20 when risperidone was given alone, and none when lamotrigine was administered alone. In clinical trials of patients who took risperidone with lamotrigine or placebo, 4 out of 53 patients (7.5%) who received lamotrigine and risperidone reported the
occurrence of somnolence or sedation, compared to 2 out of 62 patients (3.2%) who had taken placebo and risperidone.

In vitro experiments indicated that the formation of lamotrigine’s primary metabolite, the 2-N-glucuronide, was inhibited by co-incubation with sodium valproate, bupropion, clonazepam, amitriptyline, haloperidol, and lorazepam. Sodium valproate is known to reduce the clearance of lamotrigine in vivo (see above). In these experiments, the largest effect (after that of sodium valproate) was observed with bupropion; however, multiple oral doses of bupropion had no statistically significant effects on the single dose pharmacokinetics of a low dose (100 mg) of lamotrigine in 12 subjects and caused only a slight increase in the AUC of lamotrigine glucuronide. This observation suggests that the risk of a clinically relevant interaction with amitriptyline, clonazepam, haloperidol or lorazepam is therefore unlikely. The in vitro experiments also suggested that clearance of lamotrigine is unlikely to be affected by clozapine, phenelzine, risperidone, sertraline, trazodone, or fluoxetine. Bufuralol metabolism data from human liver microsomes suggest that lamotrigine does not reduce the clearance of drugs eliminated predominantly by CYP2D6.

Effect of Hormonal Contraceptives on Lamotrigine Pharmacokinetics
In a study of 16 female volunteers, 30 μg ethinyloestradiol/150 μg levonorgestrel in a combined oral contraceptive pill caused an approximately two-fold increase in lamotrigine oral clearance, resulting in an average 52% and 39% reduction in lamotrigine AUC and Cmax, respectively. Serum lamotrigine concentrations gradually increased during the course of the week of inactive medication (e.g. “pill-free week”), with pre-dose concentrations at the end of the week of inactive medication being, on average, approximately two-fold higher than during co-therapy. (see “General Dosing Recommendations in Special Patient Populations” section (for dosing instructions for women taking hormonal contraceptives) in DOSAGE AND ADMINISTRATION and “Hormonal contraceptives” section in PRECAUTIONS)

Effect of Lamotrigine on Hormonal Contraceptive Pharmacokinetics
In a study of 16 female volunteers, a steady state dose of 300 mg lamotrigine had no effect on the pharmacokinetics of the ethinyloestradiol component of a combined oral contraceptive pill. A modest increase in oral clearance of the levonorgestrel component was observed, resulting in an average 19% and 12% reduction in levonorgestrel AUC and Cmax, respectively. Measurement of serum FSH, LH and oestradiol during the study indicated some loss of suppression of ovarian hormonal activity in some women, although measurement of serum progesterone indicated that there was no hormonal evidence of ovulation in any of the 16 subjects. The impact of the modest increase in levonorgestrel clearance and the changes in serum FSH and LH, on ovarian ovulatory activity is unknown (see PRECAUTIONS). The effects of doses of lamotrigine other than 300 mg/day have not been studied and studies with other female hormonal preparations have not been conducted.

Interactions Involving Other Medications
In a study in 10 male volunteers, rifampicin increased lamotrigine clearance and decreased lamotrigine half-life due to induction of the hepatic enzymes responsible for glucuronidation. In patients receiving concomitant therapy with rifampicin, the treatment regimen recommended for lamotrigine and concurrent hepatic enzyme inducers should be used (see DOSAGE AND ADMINISTRATION).

In a study of healthy volunteers, lopinavir/ritonavir approximately halved the plasma concentrations of lamotrigine, probably by induction of glucuronidation. In patients receiving concomitant therapy with lopinavir/ritonavir, the treatment regimen recommended for lamotrigine and concurrent glucuronidation inducers should be used (see DOSAGE AND ADMINISTRATION)

A study in healthy male individuals found that there was a slightly enhanced elimination of lamotrigine in the presence of paracetamol but this was not considered to be clinically significant.
ADVERSE EFFECTS

In a double-blind, add-on placebo controlled clinical trials, skin rashes occurred in 10% of patients taking lamotrigine and in 5% of patients taking placebo. The skin rashes led to the withdrawal of lamotrigine treatment in 2% of patients in all clinical trials. The rash, usually maculopapular in appearance, generally appears within eight weeks of starting treatment and resolves on withdrawal of lamotrigine.

Serious, potentially life threatening skin rashes, including Stevens Johnson syndrome and toxic epidermal necrolysis (Lyell Syndrome) have been reported. Although the majority recover on drug withdrawal, some patients experience irreversible scarring and there have been rare cases of associated death (see PRECAUTIONS).

The overall risk of rash appears to be strongly associated with:-

- High initial doses of lamotrigine and exceeding the recommended dose escalation of lamotrigine therapy (see DOSAGE AND ADMINISTRATION)
- Concomitant use of valproate, which increases the mean half-life of lamotrigine nearly two fold (see DOSAGE AND ADMINISTRATION)

Caution is also required when treating patients with a history of allergy or rash to other antiepileptic drugs as the frequency of non-serious rash after treatment with lamotrigine was approximately three times higher in these patients than in those without such history.

Rash has also been reported as part of a hypersensitivity syndrome associated with a variable pattern of systemic symptoms including fever, lymphadenopathy, facial oedema and abnormalities of the blood and liver (see below). The syndrome shows a wide spectrum of clinical severity and may rarely lead to disseminated intravascular coagulation (DIC) and multi-organ failure. It is important to note that early manifestations of hypersensitivity (e.g. fever, lymphadenopathy) may be present even though rash is not evident. If such signs and symptoms are present the patient should be evaluated immediately and lamotrigine should be discontinued if an alternative aetiology cannot be established.

Table 3 presents a comparison of adverse experiences reported during clinical trials with lamotrigine. Data are presented, in decreasing order of the incidence seen in lamotrigine patients, from the pooled placebo controlled add-on studies that have been conducted with lamotrigine. For comparison, data are also presented from pooled monotherapy studies that have been conducted with lamotrigine. These adverse experiences have been reported most commonly during the initial weeks of treatment with lamotrigine.

<table>
<thead>
<tr>
<th>Adverse Experience</th>
<th>% Reporting from Pooled Add-On Studies ¹</th>
<th>% Reporting from Pooled Monotherapy Studies ²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lamotrigine (n = 242)</td>
<td>Placebo (n = 233)</td>
</tr>
<tr>
<td>Diplopia</td>
<td>21</td>
<td>8</td>
</tr>
<tr>
<td>Dizziness</td>
<td>19</td>
<td>12</td>
</tr>
<tr>
<td>Ataxia</td>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td>Headache</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>Asthenia</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>Nausea</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>Somnolence</td>
<td>10</td>
<td>9</td>
</tr>
</tbody>
</table>

Table 3: ADVERSE EXPERIENCES FROM CLINICAL TRIALS
<table>
<thead>
<tr>
<th>Adverse Experience</th>
<th>1%</th>
<th>4%</th>
<th>12%</th>
<th>14%</th>
<th>9%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vomiting</td>
<td>9</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Respiratory disorder</td>
<td>7</td>
<td>7</td>
<td><1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Rash</td>
<td>6</td>
<td>5</td>
<td>12</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>Pain</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Pharyngitis</td>
<td>3</td>
<td><1</td>
<td>5</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Flu syndrome</td>
<td><1</td>
<td><1</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Insomnia</td>
<td>4</td>
<td><1</td>
<td>6</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Menstrual disorder</td>
<td>1</td>
<td><1</td>
<td>1</td>
<td>5</td>
<td>–</td>
</tr>
<tr>
<td>Tremor</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td><1</td>
<td>8</td>
</tr>
<tr>
<td>Lung disorder</td>
<td><1</td>
<td><1</td>
<td>1</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Depression</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Amnesia</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Thinking abnormality</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

1. Adverse experiences with incidence ≥ 5% of lamotrigine patients (includes corresponding rates for monotherapy events).
2. Adverse experiences with incidence ≥ 5% in any treatment group (includes corresponding rates for add-on events).
– Not reported.

Irritability/aggression, tiredness, drowsiness, agitation, confusion, hallucinations have also been reported. In children hyperkinesia has been reported (5%). Very rarely, lupus-like reactions have been reported.

Arthralgia was reported commonly during the clinical development program for lamotrigine in bipolar disorder.

There have been reports of haematological abnormalities, which may or may not be associated with the hypersensitivity syndrome. These have included neutropenia, leucopenia, anaemia, thrombocytopenia, pancytopenia, and very rarely aplastic anaemia and agranulocytosis.

Movement disorders such as tics, unsteadiness, ataxia, nystagmus and tremor have also been reported. There have been reports that lamotrigine may worsen parkinsonian symptoms in patients with pre-existing Parkinson’s disease, and isolated reports of extrapyramidal effects and choreoathetosis in patients without this underlying condition.

Elevations of liver function tests and rare reports of hepatic dysfunction, including hepatic failure, have been reported. Hepatic dysfunction usually occurs in association with hypersensitivity reactions but isolated cases have been reported without overt signs of hypersensitivity.

The incidence of adverse reactions to marketed drugs, such as lamotrigine, is difficult to reliably assess due to the nature of spontaneous, voluntary, reporting systems and the problems associated with estimating the total exposure to the drug. With these limitations in mind the table below has been generated from post-marketing data collected for lamotrigine. The adverse experiences included are those believed to be probably causally related to lamotrigine (at least in some instances) and are grouped by body system with an estimate of the frequency with which the reaction may be seen in the lamotrigine treated patient population (whether or not due to the drug in individual cases).
Frequency Estimates of Adverse Reactions Seen with Lamotrigine from Post-Marketing Data

Digestive Disorders
Uncommon: Gastrointestinal disturbances, e.g. nausea, vomiting, diarrhoea, anorexia.

Haematological Disorders
Uncommon: Transient leucopenia or thrombocytopenia.
Very rare: Lymphadenopathy

Nervous System Disorders
Uncommon: Aggression, agitation, ataxia, confusion, dizziness, somnolence, irritability, tremor, diplopia, blurred vision and conjunctivitis.
Very rare: Aseptic meningitis, increase in seizure frequency.

Dermatological Disorders
Common: Rash.
Uncommon: Erythema multiforme, Stevens Johnson Syndrome.
Rare: Exfoliative dermatitis, toxic epidermal necrolysis.

† Frequency Estimates:
Common: more than one per hundred patients.
Uncommon: between one per thousand and one per hundred patients.
Rare: less than one per thousand patients.
Very rare: fewer than one per ten thousand patients.

DOSAGE AND ADMINISTRATION

Restarting Therapy
Prescribers should assess the need for escalation to maintenance dose when restarting lamotrigine in patients who have discontinued lamotrigine for any reason, since the risk of serious rash is associated with high initial doses and exceeding the recommended dose escalation for lamotrigine (see **PRECAUTIONS**). The greater the interval of time since the previous dose, the more consideration should be given to escalation to the maintenance dose. When the interval since discontinuing lamotrigine exceeds five half-lives (see “Pharmacokinetics” section in **PHARMACOLOGY**), lamotrigine should generally be escalated to the maintenance dose according to the appropriate schedule.

It is recommended that lamotrigine not be restarted in patients who have discontinued due to rash associated with prior treatment with lamotrigine unless the potential benefit clearly outweighs the risk.

Epilepsy
Since the minimum strength available for APO-Lamotrigine is the 25 mg tablet, other lamotrigine products with 2 mg and 5 mg strengths should be used instead of APO-Lamotrigine if the calculated dose is less than 25 mg.

It is strongly recommended that therapy with lamotrigine is initiated at the recommended doses. Careful incremental titration of the dose may decrease the severity of skin rashes.

If a calculated dose of lamotrigine (e.g. for use in children and patients with hepatic impairment) does not equate to whole tablets the dose to be administered is that equal to the lower number of whole tablets. If the calculated dose is 1-2 mg, 2 mg lamotrigine may be taken on alternate days for the first two weeks. If the calculated daily dose is less than 1 mg then lamotrigine should not be administered (see “Add-on Therapy in Children Aged 2 to 12 years”).
When concomitant antiepileptic drugs are withdrawn to achieve lamotrigine monotherapy or other antiepileptic drugs (AEDs) are added-on to treatment regimens containing lamotrigine, consideration should be given to the effect this may have on lamotrigine pharmacokinetics (see INTERACTIONS WITH OTHER MEDICINES).

Monotherapy in Adults and Children over 12 years of age

The initial lamotrigine dose in monotherapy is 25 mg once a day for two weeks, followed by 50 mg once a day for two weeks. Thereafter, the dose should be increased by a maximum of 50 to 100 mg every one to two weeks until the optimal response is achieved. The usual maintenance dose is 100 to 200 mg/day given once a day or as a divided doses (see Table 4).

Add-on Therapy in Adults and Children over 12 years of age

In those patients taking sodium valproate, the initial lamotrigine dose is 25 mg every alternate day for two weeks, followed by 25 mg once a day for two weeks. Thereafter, the dose should be increased by a maximum of 25-50 mg every 1-2 weeks until the optimal response is achieved. The usual maintenance dose is 100 to 200 mg/day given once a day or as a divided dose (see Table 4).

The initial lamotrigine dose in those patients not taking sodium valproate is 50 mg once a day for two weeks, followed by 100 mg/day given in two divided doses for two weeks. Thereafter, the dose should be increased by a maximum of 100 mg every 1-2 weeks until the optimal response is achieved. The usual maintenance dose is 200 to 400 mg/day given as a divided dose (see Table 4).

In open continuation studies, some patients were safely maintained on doses of lamotrigine in the range 500 to 700 mg daily for periods of up to approximately one year at the time of study completion.

In those patients taking other medication that do not significantly inhibit or induce lamotrigine glucuronidation (see INTERACTIONS WITH OTHER MEDICINES), the initial lamotrigine dose is 25 mg once a day for two weeks followed by 50 mg once a day for two weeks. Thereafter, the dose should be increased by a maximum of 50 to 100 mg every one or two weeks until the optimal response is achieved. The usual maintenance dose to achieve an optimal response is 100 to 200 mg/day given once a day or as two divided doses.
| TABLE 4
| Recommended treatment regimen in EPILEPSY for adults and children over 12 years of age |
|-----------------------------------|---------------------------------|---------------------------------|---------------------------------|
| | Weeks 1 & 2 | Weeks 3 & 4 | Maintenance Dose |
| Monotherapy | | | |
| | 25 mg (once a day) | 50 mg (once a day) | 100 – 200 mg (once a day or two divided doses) |
| | | | To achieve maintenance, doses may be increased by 50-100 mg every one to two weeks |
| Add-on therapy with valproate regardless of any concomitant medications | 12.5 mg (given as 25 mg alternate days) | 25 mg (once a day) | 100 – 200 mg (once a day or two divided doses) |
| | | | To achieve maintenance, doses may be increased by 25-50 mg every one to two weeks |
| This dosage regimen should be used with: | 50 mg (once a day) | 100 mg (two divided doses) | 200 – 400 mg (two divided doses) |
| Phenytoin | | | To achieve maintenance, doses may be increased by 100 mg every one to two weeks |
| Carbamazepine | | | |
| Phenobarbitone | | | |
| Primidone or with other inducers of lamotrigine glucuronidation (see INTERACTIONS WITH OTHER MEDICINES) | 25 mg (once a day) | 50 mg (once a day) | 100-200 mg (once a day or two divided doses) |
| | | | To achieve maintenance, doses may be increased by 50-100 mg every one to two weeks |
| Add-on therapy without valproate | | | |
| This dosage should be taken with other medications that do not significantly inhibit or induce lamotrigine glucuronidation (see INTERACTIONS WITH OTHER MEDICINES) | 50 mg (once a day) | 100 mg (two divided doses) | 200 – 400 mg (two divided doses) |
| | | | To achieve maintenance, doses may be increased by 100 mg every one to two weeks |

NOTE: In patients taking antiepileptic drugs where the pharmacokinetic interaction with lamotrigine is currently not known (see INTERACTIONS WITH OTHER MEDICINES), the treatment regimen as recommended for lamotrigine with concurrent valproate should be used.
Because of a risk of rash, the initial dose and subsequent dose escalation should not be exceeded (see PRECAUTIONS).

Add-on Therapy in Children Aged 2 to 12 years

In patients taking sodium valproate with/without any other antiepileptic drugs, the initial lamotrigine dose is 0.15 mg/kg bodyweight/day given once a day for two weeks, followed by 0.3 mg/kg bodyweight/day given once a day for two weeks. Thereafter, the dose should be increased by a maximum of 0.3 mg/kg every 1-2 weeks until the optimal response is achieved. The usual maintenance dose to achieve optimal response is 1-5 mg/kg bodyweight/day given once a day or as a divided dose, with a maximum of 200 mg/day (see Table 5).

In those patients taking concomitant antiepileptic drugs or other medicines (see INTERACTIONS WITH OTHER MEDICINES) that induce lamotrigine glucuronidation with/without other antiepileptics (except valproate) the initial lamotrigine dose is 0.6 mg/kg bodyweight/day given as a divided dose for two weeks, followed by 1.2 mg/kg bodyweight/day for two weeks. Thereafter the dose should be increased by a maximum of 1.2mg/kg every 1-2 weeks until optimal response is achieved. The usual maintenance dose is 5-15 mg/kg bodyweight/day given as a divided dose, with a maximum of 400 mg/day (see Table 5).

In patients taking other medications that do not significantly inhibit or induce lamotrigine glucuronidation (see INTERACTIONS WITH OTHER MEDICINES), the initial lamotrigine dose is 0.3 mg/kg bodyweight/day given once a day or in two divided doses for two weeks, followed by 0.6 mg/kg/day given once a day or in two divided doses for two weeks. Thereafter, the dose should be increased by a maximum of 0.6 mg/kg every one to two weeks until the optimal response is achieved. The usual maintenance dose to achieve optimal response is 1 to 10 mg/kg/day given once a day or in two divided doses, with a maximum of 200 mg/day.
TABLE 5
Recommended treatment regimen in EPILEPSY for children aged 2-12 years (total daily dose in mg/kg bodyweight/day)

<table>
<thead>
<tr>
<th>Add-on therapy with valproate regardless of any other concomitant medications</th>
<th>Weeks 1 & 2</th>
<th>Weeks 3 & 4</th>
<th>Maintenance Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15 mg/kg (once a day)</td>
<td>0.3 mg/kg (once a day)</td>
<td>0.3 mg/kg increments every one to two weeks to achieve a maintenance dose of 1-5 mg/kg (once a day or two divided doses) to a maximum of 200 mg/day.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Add-on therapy without valproate</th>
<th>This dosage regimen should be used with: Phenytoin Carbamazepine Phenobarbitone Primidone or with other inducers of lamotrigine glucuronidation (see INTERACTIONS WITH OTHER MEDICINES)</th>
<th>Weeks 1 & 2</th>
<th>Weeks 3 & 4</th>
<th>Maintenance Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6 mg/kg (two divided doses)</td>
<td>1.2 mg/kg (two divided doses)</td>
<td>1.2 mg/kg increments every one to two weeks to achieve a maintenance dose of 5-15 mg/kg (once a day or two divided doses) to a maximum of 400 mg/day.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Add-on therapy without valproate</th>
<th>This dosage should be taken with other medications that do not significantly inhibit or induce lamotrigine glucuronidation (see INTERACTIONS WITH OTHER MEDICINES)</th>
<th>Weeks 1 & 2</th>
<th>Weeks 3 & 4</th>
<th>Maintenance Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3 mg/kg (one or two divided doses)</td>
<td>0.6 mg/kg (one or two divided doses)</td>
<td>0.6 mg/kg increments every one to two weeks to achieve a maintenance dose of 1-10 mg/kg (once a day or two divided doses) to a maximum of 200 mg/day.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In patients taking antiepileptic drugs where the pharmacokinetic interaction with lamotrigine is currently not known (see INTERACTIONS WITH OTHER MEDICINES), the treatment regimen as recommended for lamotrigine with concurrent valproate should be used.

NOTE: If the calculated daily dose in patients taking valproate is 1-2 mg then 2 mg lamotrigine may be taken on alternate days for the first two weeks. If the calculated daily dose in patients taking valproate is less than 1 mg, then lamotrigine should not be administered.

Since the minimum strength available for APO-Lamotrigine is the 25 mg tablet, other lamotrigine products with 2 mg and 5 mg strengths should be used instead of APO-Lamotrigine if the calculated dose is less than 25 mg.
Add-on Therapy in Children Under 2 years

APO-Lamotrigine is not suitable for use in children under 2 years as the minimum strength available is the 25 mg tablet. However, the general dosing recommendation for this age group is as follows:

To ensure a therapeutic dose is maintained the weight of a child must be monitored and the dose reviewed as weight changes occur. If the doses calculated for children, according to bodyweight, do not equate to whole tablets the dose to be administered is that equal to the lower number of whole tablets.

Due to the very limited safety, efficacy, pharmacokinetic and dosing data that are available in children under 2 years old, dosing in this age group should only be initiated within a specialist unit. There are no data available on the use of lamotrigine in neonates. In particular the use of lamotrigine in patients less than 2 years old, who are also taking sodium valproate, is not recommended. This is due to the difficulties in providing an accurate initial dose.

Because of a risk of rash, the initial dose and subsequent dose escalation should not be exceeded (see PRECAUTIONS).

General Dosing Considerations for Add-on Therapy

For patients receiving lamotrigine in combination with other antiepileptic drugs, whether or not optimal dosing has been achieved, a re-evaluation of all antiepileptic drugs in the regimen should be considered if a change or no improvement in seizure control or an appearance or worsening of adverse experiences is observed (see PRECAUTIONS).

Withdrawal of Concomitant Antiepileptic Drugs

The dose of lamotrigine following the withdrawal of concomitant antiepileptic drugs will be dependent upon the pharmacokinetics of the drug(s) being withdrawn, together with the overall clinical response of the patient. The withdrawal of enzyme inducing antiepileptic drugs (e.g. phenytoin and carbamazepine) may not require a reduction in the lamotrigine dose unless there is a need due to safety considerations. An increase in the lamotrigine dose may, however, be required following the withdrawal of enzyme inhibiting antiepileptic drugs (e.g. sodium valproate) (see PRECAUTIONS and INTERACTIONS WITH OTHER MEDICINES).

Discontinuation of Lamotrigine in Patients with Epilepsy

As with other antiepileptic drugs, abrupt withdrawal of lamotrigine may provoke rebound seizures and should be avoided wherever possible. Unless safety concerns (for example, serious skin reactions) require an abrupt withdrawal, the dose of lamotrigine should be gradually decreased over a period of two weeks.

General Dosing Recommendations in Special Patient Populations

Women Taking Hormonal Contraceptives

(a) Starting lamotrigine in patients already taking hormonal contraceptives:

Although an oral contraceptive has been shown to increase the clearance of lamotrigine (see PRECAUTIONS and INTERACTIONS WITH OTHER MEDICINES), no adjustments to the recommended dose escalation guidelines for lamotrigine should be necessary solely based on the use of hormonal contraceptives. Dose escalation should follow the recommended guidelines based on whether lamotrigine is added to an enzyme inhibitor of lamotrigine e.g. valproate; whether lamotrigine is added to an enzyme inducer of lamotrigine e.g. carbamazepine, phenytoin, phenobarbital, primidone, rifampicin or lopinavir/ritonavir; or whether lamotrigine is added in the absence of valproate, carbamazepine, phenytoin, phenobarbital, primidone, rifampicin or lopinavir/ritonavir.

(b) Starting hormonal contraceptives in patients already taking maintenance doses of lamotrigine and NOT taking enzyme inducers of lamotrigine:

The maintenance dose of lamotrigine may need to be increased by as much as two-fold according to the individual clinical response (see PRECAUTIONS and INTERACTIONS WITH OTHER MEDICINES).
(c) Stopping hormonal contraceptives in patients already taking maintenance doses of lamotrigine and NOT taking enzyme inducers of lamotrigine:

The maintenance dose of lamotrigine may need to be decreased by as much as 50% according to the individual clinical response (see PRECAUTIONS and INTERACTIONS WITH OTHER MEDICINES).

Use in the Elderly
To date, there is no evidence to suggest that the response of this age group differs from that in young patients with epilepsy. The dosage schedule recommended in adults and children more than 12 years of age can be applied to the elderly population (aged 65 years or more). As older patients are more likely to suffer from intercurrent illness and require medications to treat other medical conditions, lamotrigine should be used cautiously in these patients and they should be monitored regularly.

Hepatic Impairment
Initial, escalation and maintenance doses should generally be reduced by approximately 50% in patients with moderate (Child-Pugh grade B) and 75% in severe (Child-Pugh grade C) hepatic impairment. Escalation and maintenance doses should be adjusted accordingly to clinical response.

Renal Impairment
Caution should be exercised when administering lamotrigine to patients with renal failure. For patients with end-stage renal failure, initial doses of lamotrigine should be based on patients’ antiepileptic drugs regimen; reduced maintenance doses may be effective for patients with significant renal functional impairment.

Administration
APO-Lamotrigine tablets have been formulated as dispersible/chewable tablets and may be swallowed whole, chewed or dispersed in a small volume of water (at least enough to cover the whole tablet).

OVERDOSAGE
Symptoms and Signs
Overdose has resulted in the following clinical features: nystagmus, ataxia, dizziness, somnolence, blurred vision, headache, vomiting, impaired consciousness, increased seizures, and coma. Acute ingestion of doses in excess of 10 to 30 times the maximum therapeutic dose has been reported. Overdoses involving quantities up to 15 g have been reported for lamotrigine, some of which have been fatal.

A patient who ingested a dose calculated to be between 4 and 5 g lamotrigine was admitted to hospital with coma lasting 8-12 hours, followed by recovery over the next 2-3 days. A further patient who ingested 5.6 g lamotrigine was found unconscious. Following treatment with activated charcoal for suspected intoxication the patient recovered after sleeping for 16 hours.

Treatment
No specific antidotes are available to treat overdose. In the event of overdose, the patient should be admitted to hospital and given appropriate supportive therapy. Measures should be taken to protect the airways, as consciousness may be impaired.

Contact the Poison Information Centre on 13 11 26 (Australia) for advice on the management of overdose.
PRESENTATION AND STORAGE CONDITIONS

Each APO-Lamotrigine tablet contains: calcium carbonate, aspartame, microcrystalline cellulose, hydroxypropyl cellulose, purified talc, magnesium stearate, povidone, colloidal anhydrous silica, Cal-Carb 4450 PG and Mixed Berries 501161 AP0551.

APO-Lamotrigine 25 mg tablets: White to off-white, uncoated, circular flat beveled tablets debossed with “LI2” on one side, plain on the other side having a characteristic fruity odour. AUST R 167520.

APO-Lamotrigine 50 mg tablets: White to off-white, uncoated, circular flat beveled tablets debossed with “LI3”, plain on the other side having a characteristic fruity odour. AUST R 167521

APO-Lamotrigine 100 mg tablets: White to off-white, uncoated, circular flat beveled tablets debossed with “LI4” on one side, plain on the other side having a characteristic fruity odour. AUST R 167523.

APO-Lamotrigine 200 mg tablets: White to off-white, uncoated, circular flat beveled tablets debossed with “LI5” on one side, plain on the other side having a characteristic fruity odour. AUST R 167524.

APO-Lamotrigine Tablets are available in blister packs of 56 tablets.

APO-Lamotrigine tablets should be stored below 25°C and protected from moisture.

POISONS SCHEDULE OF THE MEDICINE: S4

NAME AND ADDRESS OF THE SPONSOR

Apotex Pty Ltd
66 Waterloo Road
North Ryde NSW 2113
Australia

Date of TGA approval: 6 January 2010

Date of most recent amendment: 18 March 2010