APO-RISPERIDONE TABLETS

NAME OF THE MEDICINE

Risperidone.

Chemical Name: 3-[2-[4-(6-fluoro-1,2-benzisoxazol-3-yl)-1-piperidinyl]ethyl]-6,7,8,9-tetrahydro-2-methyl-4H-pyrido[1,2-a]pyrimidin-4-one.

Structural Formula:

![Structural Formula Image]

Molecular Formula: C_{23}H_{27}F_{3}N_{4}O_{2}
Molecular Weight: 410.5
CAS Registry Number: 106266-06-2

DESCRIPTION

Risperidone is a white or almost white powder, practically insoluble in water, freely soluble in methylene chloride, sparingly soluble in alcohol. It dissolves in dilute acid solutions. It shows polymorphism.

PHARMACOLOGY

Risperidone is a novel antipsychotic belonging to a new class of antipsychotic agents, the benzisoxazole derivatives.

Pharmacokinetics

Risperidone is well absorbed after oral administration, reaching peak plasma concentrations within 1 to 2 hours. The absorption is not affected by food and thus risperidone can be given with or without meals.

Risperidone is partly metabolised by CYP 2D6 to 9-hydroxy-risperidone which has two enantiomers with a similar pharmacological activity as risperidone. Another metabolic pathway is oxidative N-dealkylation. 7-hydroxyrisperidone and the metabolite formed by N-dealkylation do not contribute to the activity of risperidone.

In vitro data suggest that drugs that inhibit the metabolism of risperidone to 9-hydroxy-risperidone by inhibition of CYP 2D6 would increase the plasma concentration of risperidone and lower the plasma concentration of 9-hydroxy-risperidone (see PRECAUTIONS Interactions with Other Medicines). Drugs metabolised by other P450 isoenzymes (1A1, 1A2, 2C9, MP, 3A4) are only weak inhibitors of risperidone metabolism in vitro. Although in vitro studies suggest that risperidone can inhibit CYP 2D6, substantial inhibition of the clearance of drugs metabolised by this enzymatic pathway would not be expected at therapeutic risperidone plasma concentrations. However, clinical data to confirm this expectation are not available.

Risperidone and 9-hydroxy-risperidone form the pharmacologically active risperidone plus 9-hydroxy-risperidone that is similar in extensive and poor metabolisers. Risperidone has an elimination half-life of about 3 hours in extensive metabolisers and 17 hours in poor metabolisers. Clinical studies do not suggest that poor and extensive metabolisers have different rates of adverse effects. No comparison of effectiveness in the two groups has been made. The elimination half-life of 9-hydroxy-risperidone and risperidone plus 9-hydroxy-risperidone is 24 hours.

Steady state of risperidone is reached within 1 day in most patients. Steady state of 9-hydroxy-risperidone is reached within 4–5 days of dosing. Risperidone plasma concentrations are dose proportional within the therapeutic dose range. Risperidone is rapidly distributed. The volume of distribution is 1–2 L/kg. In plasma, risperidone is bound to albumin and alpha_{1}-acid glycoprotein. The plasma protein binding of risperidone is 88% and that of 9-hydroxy-risperidone is 77%. The binding of
either product was not affected by the presence of the other.

One week after administration, 70% of the dose is excreted in the urine and 14% in the faeces. In urine, risperidone plus 9-hydroxy-risperidone represents 35 to 45% of the dose.

A single dose study showed higher active plasma concentrations and a slower elimination of risperidone by 30% in the elderly and 60% in patients with renal insufficiency. Risperidone plasma concentrations were normal in patients with hepatic insufficiency, but the unbound risperidone was somewhat increased by about 35% due to diminished concentration of both alpha₁-acid glycoprotein and albumin.

The pharmacokinetics of risperidone, 9-hydroxy-risperidone and risperidone plus 9-hydroxy-risperidone in children is similar to that in adults.

Pharmacodynamics

Risperidone is a selective monoaminergic antagonist with a high affinity for serotoninergic 5HT₂-receptors and dopaminergic D₂-receptors.

Risperidone binds also to alpha₁-adrenergic receptors, and with lower affinity, to H₁-histaminergic and alpha₂-adrenergic receptors. Risperidone has no affinity for cholinergic receptors. The antipsychotic activity of risperidone is considered to be attributable to both risperidone and its active metabolite 9-hydroxy-risperidone.

Central dopamine D₂-receptor antagonism is considered to be the mechanism of action by which conventional neuroleptics improve the positive symptoms of schizophrenia, but also induce extrapyramidal symptoms and release of prolactin.

Although risperidone antagonises dopamine D₂-receptors and causes release of prolactin, it is less potent than classical neuroleptics for depression of motor activity and for induction of catalepsy in animals.

Balanced central serotonin and dopamine antagonism may reduce extrapyramidal side effect liability and extend the therapeutic activity to the negative and affective symptoms of schizophrenia.

Due to the alpha-blocking activity of risperidone, orthostatic hypotension can occur, especially during the initial dose-titration period. This alpha-blocking activity may also induce nasal mucosal swelling, which is probably related to the observed incidence of rhinitis associated with the use of risperidone.

Antagonism of serotoninergic and histaminergic receptors may induce bodyweight gain.

In controlled clinical trials, risperidone was found to improve positive symptoms (such as hallucinations, delusions, thought disturbances, hostility, suspiciousness), as well as negative symptoms (such as blunted affect, emotional and social withdrawal, poverty of speech). Risperidone may also alleviate affective symptoms (such as depression, guilt feelings, anxiety) associated with schizophrenia.

CLINICAL TRIALS

Schizophrenia

Clinical trials have shown that risperidone is indicated for the treatment of schizophrenia including first episode psychoses, acute schizophrenic exacerbations and chronic schizophrenia. Risperidone is also indicated as long term therapy for the prevention of relapse (acute exacerbations) in chronic schizophrenic patients.

First Episode Psychosis

In a 6-week double blind parallel group, actively controlled study in first admission, newly diagnosed schizophrenic patients (n = 183, risperidone = 99, haloperidol = 84), risperidone (1–8 mg twice daily, mean daily dose 6.1 mg) was as effective as haloperidol (1–8 mg twice daily, mean daily dose 5.6 mg) in controlling psychotic symptoms. The average patient age was 26 years (range 15 to 50) and 31% of the patients were women. There were statistically significant (p < 0.001) reductions in total PANSS, positive, negative and general psychological symptom scores and in derived BPRS scores in both groups.

Acute Exacerbations of Chronic Schizophrenia

Two new studies were conducted to establish the efficacy of risperidone in the treatment of acute exacerbations of schizophrenia. A third study investigated the efficacy of risperidone in the treatment of resistant schizophrenics.

The first was a double blind, parallel group, actively controlled study of 6 weeks duration in
98 patients (risperidone = 48, zuclopenthixol = 50), 48% of whom were male. The dosage was risperidone 2 mg bid and zuclopenthixol 10 mg bid increasing by one tablet a day until adequate control was achieved. The mean daily dose at end point for risperidone was 8 mg and for zuclopenthixol 38 mg. The median age was in the mid 30’s (range 18–65). The overall severity of symptoms during the study was lower for risperidone (p = 0.06) and the clinical response (58% vs. 42%; p = 0.11) was higher for risperidone.

Two dosages of risperidone 4 mg bid and 8 mg od, were studied in the treatment of acute exacerbations of schizophrenia in chronic or subchronic schizophrenics. The study was a double blind parallel-group study of 6 weeks duration with a patient population of 211 patients (67% males) aged 18–64 (median 34) years. Efficacy was comparable for the two groups, although the trough plasma drug concentrations were lower and concentrations in the first 8 hours post dose were higher (statistically not significant) for the 8 mg od dosage. According to basic pharmacokinetic principles, these findings are expected because a once daily dosage regimen will result in higher peaks and lower troughs than after the same daily dose given over two intakes.

The efficacy and tolerability of risperidone (1–6 mg twice daily) compared to clozapine (50–300 mg twice daily) in treatment resistant schizophrenic patients was studied in an 8 week multicentre double-blind, parallel group study in 86 patients (risperidone = 43, clozapine = 43). In both groups of patients, there was a significant reduction in total PANSS scores in the positive, negative and psychopathology subscales and in the PANSS-derived BPRS scores. The percentage of patients showing a clinical response at endpoint on the PANSS and BPRS (at least 20% reduction in base score) was comparable (68%) for both treatment groups.

Long-Term Therapy for the Prevention of Relapse (Acute Exacerbations) in Chronic Schizophrenic Patients

The long-term efficacy and tolerability of risperidone was established at the time of marketing in open long term studies involving 402 patients of whom 282 had been treated with risperidone for 6 months, 221 for 12 months and 30 patients for between 12 and 40 months.

Additional long-term data are available from an actively controlled study and a study compared to the patient's usual neuroleptic treatment. The total number of patients treated with risperidone in these two studies was 285, while 306 patients were treated with haloperidol or other neuroleptics. In another three long-term open studies, 758 patients were treated with risperidone.

In a multicentre, double-blind, randomized, parallel group trial of 1 year duration risperidone (91 patients, 63% male) was compared to haloperidol (99 patients, 59% male) to evaluate the incidence of relapse in chronic schizophrenic patients. The mean daily dose at endpoint was risperidone 9 mg risperidone and haloperidol 8.9 mg. The incidence of relapse was 14% for risperidone and 16% for haloperidol and the time to withdrawal from the study because of an adverse event and/or psychotic relapse was longer for risperidone (day 99) compared to day 42 under haloperidol (p = 0.023). At endpoint response on the total PANSS score defined as a 50% score reduction versus baseline was observed in 43% of patients receiving risperidone compared to 30% of patients receiving haloperidol (p = 0.035). The total BPRS score at endpoint, defined as at least a 50% reduction in baseline score value, was 47% of patients receiving risperidone compared with 34% of patients receiving haloperidol (p = 0.043). The instrumental role functioning on the Quality of Life Scale scored significantly better under risperidone (p = 0.037). The Clinical Global Impression scores showed no significant difference between the two treatment groups. The results of the trial show that risperidone is as efficacious and safe as haloperidol.

Mania in Bipolar Disorder

Monotherapy

The efficacy of risperidone in the treatment of acute mania was established in three double-blind placebo-controlled studies of 3-week duration in patients who met the DSM-IV criteria for bipolar 1 disorder. These studies included patients with or without psychotic features.

The primary efficacy variable in all studies was the Young Mania Rating Scale (YMRS), an 11-item clinician rated scale traditionally used to assess the degree of manic symptomatology (irritability, disruptive/aggressive behaviour, sleep, elevated mood, speech, increased activity, sexual interest, language/thought disorder, thought content, appearance and insight). Secondary efficacy measures included the Clinical Global Impression Scale of Severity and the Global Assessment Scale. In order to capture treatment effects on depressive symptomatology the Montgomery Asberg Depression Scale or the Hamilton Rating Scale for Depression was used. Psychosis and general psychopathology were measured using the PANSS or BPRS.

All studies used a flexible once daily dose of risperidone in the range of 1–6 mg/day.
In studies 1 and 2 (n = 246 and n = 286) risperidone was superior to placebo in the reduction of YMRS total score regardless of baseline disease severity and the presence or absence of psychosis at baseline. Significant treatment differences were evident at week 1 and increased during the 3-week treatment period. Risperidone also showed significant differences in secondary efficacy measures.

Study 3 (n = 438) also included an active comparator arm using haloperidol. Risperidone was superior to placebo and similar to haloperidol in its effects on both primary and secondary efficacy measures. The maintenance phase of this study involved a 9-week double blind treatment of risperidone or haloperidol or a 9-week open label treatment on risperidone. Efficacy was maintained throughout the treatment period, although change from baseline in the MADRS was not as clearly maintained.

In open label extension studies, change from baseline in total YMRS showed continued improvement.

Adjunctive Therapy

The efficacy of risperidone in the treatment of acute mania in combination with mood stabilisers was demonstrated in two 3-week double-blind studies in patients who met the DSM-IV criteria for bipolar 1 disorder.

One study (n = 148) was in patients on lithium or valproate therapy with inadequately controlled symptoms randomised to receive risperidone, haloperidol or placebo in combination with their original therapy. Risperidone combined with lithium or valproate was superior to lithium or valproate alone in the reduction of YMRS total score.

The second study (n = 142) was in patients on lithium, valproate or carbamazepine therapy with inadequately controlled symptoms randomised to receive risperidone or placebo in combination with their original therapy. A failure to demonstrate a significant advantage appeared to be due to carbamazepine induction of the metabolism of risperidone reducing risperidone plus 9-hydroxy-risperidone plasma concentration. When the carbamazepine group was excluded in post hoc analysis, risperidone combined with lithium or valproate was superior to lithium or valproate alone in the reduction of YMRS total score.

Behavioural Disturbances in Dementia

The efficacy of risperidone in the treatment of behavioural disturbances, such as aggressiveness (verbal outburst, physical violence), activity disturbances (agitation, wandering) and psychotic symptoms (paranoid and delusional ideation, hallucinations) in patients with dementia was demonstrated in two double-blind, placebo-controlled clinical studies. One study was a randomized, parallel group, multicentre design involving 617 patients that examined the efficacy of three doses of risperidone (0.5, 1 or 2 mg/day) over a 12-week period.

The other involved 344 patients assigned to either placebo, risperidone or haloperidol for a 12-week period. The two studies were pooled and the results from this analysis are presented in the following table. The primary outcome parameter was the percentage of responders, defined as a reduction at endpoint of at least 30% on the Behave-AD total score. Several important aspects of efficacy were assessed by the secondary endpoints that examined the effect on individual disturbances (e.g. aggressiveness). Aggressive symptoms were the major problem at entry in the two trials.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Placebo (n = 275)</th>
<th>Risperidone < 0.75 mg (n = 193)</th>
<th>Risperidone 0.75 - < 1.5 mg (n = 203)</th>
<th>Risperidone ≥ 1.5 mg (n = 175)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Behave – AD, % responders</td>
<td>50</td>
<td>52</td>
<td>58</td>
<td>65*</td>
</tr>
<tr>
<td>Behave – AD, Total score % improvement</td>
<td>25</td>
<td>30</td>
<td>36**</td>
<td>40**</td>
</tr>
<tr>
<td>Behave – AD, Aggression cluster % improvement</td>
<td>18</td>
<td>28</td>
<td>36**</td>
<td>45**</td>
</tr>
<tr>
<td>Behave – AD, Psychosis cluster % improvement</td>
<td>32</td>
<td>33</td>
<td>44*</td>
<td>40</td>
</tr>
</tbody>
</table>
CMAI – Physical aggressive % improvement 9 18 39** 47**

CMAI – Verbal aggressive % improvement 10 31* 30** 41**

CMAI – Total aggressive % improvement 9 24 36** 47**

* p ≤ 0.05 vs placebo
** p < 0.01 vs placebo

The rate of discontinuation from the pooled studies was similar for patients receiving placebo (30.2%), risperidone (33.5%) and haloperidol (29.6%). In the combined analysis, risperidone, at a daily dose above 0.75 mg, effectively reduces the severity (measured by means of the Behave-AD) and frequency (measured by the CMAI) of aggressiveness symptoms in this patient population.

Reductions in Behave-AD aggressiveness scores and on each of the aggressive clusters of the CMAI were significantly greater with risperidone (doses above 0.75 mg/day) than placebo at endpoint in both studies and in the combined analysis.

Reductions in CMAI total aggressive scores declined throughout the studies in the risperidone patients but changed minimally after week 2 in patients receiving haloperidol or placebo.

Conduct Disorder

Children and Adolescents

Two double blind placebo controlled randomised parallel group studies of 6 weeks duration were conducted in children and adolescents 5 to 12 years with borderline intellectual functioning or mild to moderate mental retardation. The studies, of identical design, involved a combined population of 120 patients receiving placebo and 105 patients receiving risperidone at 0.02 - 0.06 mg/kg/day. 26% of the patients receiving risperidone had conduct disorder with attention deficit hyperactivity disorder (ADHD), 39% had oppositional defiant disorder with ADHD and 6% had disruptive behavioural disorder with ADHD. A decrease in the primary efficacy parameter of the Conduct Problem Subscale of the Nisonger Child Behaviour Rating Form (N-CBRF) of -6.5 ± 1.02 was observed in placebo treated patients compared to -15.6 ± 1.04 for risperidone. The improvement for risperidone compared to placebo was statistically significant (p < 0.001). A statistically significant difference between risperidone and placebo was apparent at week 1 and continued throughout treatment. A subanalysis of patients with ADHD indicated risperidone was effective for the primary and secondary efficacy parameters whether psychostimulants were or were not being taken.

A 6-month, double-blind, placebo-controlled, relapse prevention study in children and adolescents with disruptive behaviour disorders who responded to 12 weeks of treatment with risperidone (6 weeks of open-label treatment followed by 6 weeks of single-blind treatment) was performed. The subjects enrolled had either average IQ, borderline intellectual functioning, or mild to moderate retardation/learning disorder; subjects with moderate or severe mental retardation/learning disorder were excluded. The study consisted of 3 phases: a 6-week, open-label acute treatment phase with risperidone (phase 1); a 6-week single-blind continuation phase with risperidone (phase 2); and a 6-month, double-blind, withdrawal phase during which subjects were randomly assigned to treatment with placebo or continued risperidone (phase 3). The total study duration was 36 weeks. This relapse prevention study used a flexible dose range of risperidone based on body weight categories with 0.25 to 0.75 mg/day administered to subjects < 50 kg and 0.5 to 1.5 mg/day given to subjects ≥ 50 kg. A total of 306 children and adolescents aged 5 to 17 years with disruptive behaviour disorders and an IQ of at least 55 (63% had normal intellectual functioning) were maintained on risperidone therapy or switched to placebo. The primary efficacy parameter was the time from initiation of double-blind treatment to discontinuation resulting from relapse, based on predefined criteria. Results of the study demonstrated that children and adolescents with disruptive behaviour disorders who continued treatment with risperidone experienced relapse significantly later than those subjects who were switched to placebo (p < 0.001). The time to when 25% of subjects relapsed was 91 days in the risperidone group compared with 32 days in the placebo group. Safety results of this study demonstrated that the overall adverse event rate was similar to that seen in the acute disruptive behaviour disorders trials and consistent with the adverse event profile seen in adults with psychotic disorders.

Adults

A double blind placebo controlled, randomised parallel group study was conducted in adults with borderline intellectual function or mild to moderate mental retardation and conduct or other disruptive behaviour disorders. 39 patients received risperidone 1.0–4.0 mg/day of risperidone (modal dose
1.64 mg/day) and 38 patients received placebo for 4 weeks. The change in the Aberrant Behaviour Checklist (ABC) score from baseline to endpoint, the primary efficacy parameter, was -27.3 in the risperidone group compared to -14.9 in the placebo group (p < 0.05). Significantly greater reduction in the ABC total score was noted at week 2 in patients receiving risperidone and was maintained throughout the double blind period.

Long-Term Studies

Three open label long term studies, two in children and adolescents and one in adults, were conducted. One study in children and adolescents (n = 107) of 48 weeks duration was an extension of a primary clinical study.

A statistically significant improvement from the double blind (p < 0.001) and open label (p < 0.01) baselines was observed. In the other long-term study in children (n = 319) of 52 weeks duration the mean change in N-CBRF from baseline to endpoint was highly statistically significant (p < 0.001).

The mean modal dose for the long term studies in children was 1.67 ± 0.039 mg/day (range 0.2 to 4.0).

The one year long term study in adults (n = 58) was a continuation of the 6-week double blind study.

The mean ABC score at open label baseline was 31.2. At endpoint the mean decrease from OL baseline was 9.0 (p = 0.012).

The overall mean modal dose in adults during long term treatment was 1.81 ± 0.125 mg/day (range 1–4 mg/day). The safety profile of risperidone in children, adolescents and adults with conduct disorder and other disruptive disorders is comparable to that seen in other populations (e.g. schizophrenia).

The growth observed in children and adolescents after one year of treatment with risperidone was 6.9 cm. On the basis of growth curves in children of the same age, growth is as expected.

Autism

The efficacy of risperidone in the treatment of behavioural disorders associated with autism was established in two 8 week, double blind, parallel group, placebo controlled trials in patients who met the DSM-IV criteria for autism disorder.

Efficacy was evaluated using two primary assessment scales: the Aberrant Behaviour Checklist (ABC) and the Clinical Global Impression – Change (CGI-C) scale. The ABC scale, which was completed by the parent or caregiver, is a validated instrument composed of five subscales to assess irritability, lethargy/social withdrawal, stereotypic behaviour, hyperactivity/noncompliance and inappropriate speech. The CGI-C scale, which was completed by a clinician, reflects the impression of a skilled observer, fully familiar with the symptoms of autism, about the overall clinical disposition of the patient.

In Study 1 (n = 101) patients aged 5 to 17 years received twice daily doses of placebo or risperidone 0.5–3.5 mg/day on a weight-adjusted basis. Risperidone titrated to clinical response (mean modal dose of 1.9 mg/day, equivalent to 0.06 mg/kg/day) significantly improved scores on the ABC irritability subscale and on the CGI-C scale compared to placebo. Risperidone was also superior to placebo in improving scores on the ABC subscales of lethargy/social withdrawal, stereotypic behaviour, hyperactivity/noncompliance and inappropriate speech (see following table).

<table>
<thead>
<tr>
<th>Analysis of five ABC Subscales at Endpoint by Study, for the Autistic Disorder Subset of RIS-CAN-23 and for the Pooled Autistic Disorder Subset (RIS-USA-150 part 1 + RIS-CAN-23)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIS-USA-150 Part 1</td>
</tr>
<tr>
<td>-----------------------------------</td>
</tr>
<tr>
<td>n (RIS : placebo)</td>
</tr>
<tr>
<td>Diff LS means</td>
</tr>
<tr>
<td>change 95% CI p-value</td>
</tr>
<tr>
<td>RIS-CAN-23</td>
</tr>
<tr>
<td>n (RIS : placebo)</td>
</tr>
<tr>
<td>Diff LS means</td>
</tr>
<tr>
<td>change 95% CI p-value</td>
</tr>
</tbody>
</table>
RIS-CAN-23
Autistic Disorder Subset
n (RIS : placebo)
Diff LS means change 95% CI
p-value
54 (26:28) -3.9 -1.3 -8.8
-7.1 -4.4 0.058 -0.020 < 0.001
53 (25:28) -2.2 -2.6 0.053 -0.053 < 0.001
54 (26:28) -1.3 -9.5 0.058 -0.058 < 0.001
52 (24:28) -5.8 -13.8 0.058 -13.8 -3.9
52 (26:28) -8.8

Pooled Autistic Disorder Subset
n (RIS : placebo)
Diff LS means change 95% CI
p-value
55 (75:80) -3.4 -1.6 -13.4
-5.2 -3.7 0.001 < 0.001 < 0.001
55 (74:80) -2.5 -2.4 0.001 < 0.001 < 0.001
55 (75:80) -1.3 -11.8 0.001 < 0.001 < 0.001
55 (73:80) -8.9 -13.2 0.001 < 0.001 < 0.001
55 (74:79) -10.4 -7.6

Diff LS means change: LS means change in risperidone group minus LS means change in placebo group based on ANCOVA model
95% CI: 95% confidence interval for between treatment group difference based on ANCOVA model
p-Value: comparison with placebo based on ANCOVA model with treatment, investigator (or study for pooled) as factors, and baseline value as a covariate
RIS: Risperidone; ABC: Aberrant Behaviour Checklist

Following completion of Study 1, 63 patients entered an open-label extension for up to 4 additional months. 39 patients who were clinically stable and who showed a positive response to risperidone after 6 months were then randomised to receive risperidone or placebo during an 8-week, double blind withdrawal period. The relapse rate was 11/16 and 2/16 in placebo and risperidone treated patients, respectively (Odds ratio 15.4, 95% confidence limits 2.50, 95.05).

In Study 2 (n = 55) patients aged 5–12 years received once or twice daily doses of placebo or risperidone 0.02–0.06 mg/kg/day. Risperidone titrated to clinical response (mean modal dose of 1.4 mg/day equivalent to 0.04 mg/kg/day) significantly improved scores on the ABC irritability subscale compared to placebo. Risperidone was also superior to placebo in improving scores on the CGI-C scale and on the ABC subscales of lethargy/social withdrawal and hyperactivity/noncompliance (see following table).

CGI-C Responders at Endpoint by Study for the Autistic disorder Subset of RIS-CAN-23, and for the Pooled Autistic Disorder Subset (RIS-USA-150 part 1 + RIS-CAN-23)

<table>
<thead>
<tr>
<th>Study treatment</th>
<th>Total (n)</th>
<th>Responders n (%)</th>
<th>Comparison with Placebo Treatment Difference in % (95% CI)</th>
<th>p-Value *</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIS-USA-150 Part 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>52</td>
<td>6 (11.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risperidone</td>
<td>49</td>
<td>37 (75.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>64.0 (49.1, 78.8)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>RIS-CAN-23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>38</td>
<td>7 (18.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risperidone</td>
<td>39</td>
<td>21 (53.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>35.4 (15.5, 55.3)</td>
<td>0.001</td>
</tr>
<tr>
<td>RIS-CAN-23 Autistic Disorder Subset</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>28</td>
<td>6 (21.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risperidone</td>
<td>26</td>
<td>14 (53.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>32.4 (8.0, 56.9)</td>
<td>0.015</td>
</tr>
<tr>
<td>RIS-USA-150 + RIS-CAN-23 Autistic Disorder Subset</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>80</td>
<td>12 (15.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risperidone</td>
<td>75</td>
<td>51 (68.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>53.0 (39.9, 66.1)</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

*p-Value: CMH test for association between risperidone treatment and CGI-G response controlling for investigator (or study for pooled)
CGI-C: Clinical Global Impression- Change

As few autistic children with an IQ > 84 are seen, there is limited clinical experience with risperidone in such children. Experience in autistic adolescents is also limited.
INDICATIONS

- Treatment of schizophrenia and related psychoses
- Short-term treatment of acute mania associated with bipolar 1 disorder
- Treatment of behavioural disturbances in dementia
- Treatment of conduct and other disruptive disorders in children (over 5 years), adolescents and adults with sub-average intellectual functioning or mental retardation in whom destructive behaviours (e.g. aggression, impulsivity and self-injurious behaviours) are prominent
- Treatment of behavioural disorders associated with autism in children and adolescents (see CLINICAL TRIALS).

CONTRAINDICATIONS

Known hypersensitivity to the medicine or any of its excipients.

PRECAUTIONS

Elderly Patients with Dementia

Overall Mortality

Elderly patients with dementia treated with atypical antipsychotic medicines have an increased mortality compared to placebo in a meta-analysis of 17 controlled trials of atypical antipsychotic drugs, including risperidone. In placebo-controlled trials with risperidone in this population, the incidence of mortality was 4.0% (40/1,009) for risperidone treated patients and 3.1% (22/712) for placebo-treated patients. The mean age (range) of patients who died was 86 years (range 67 to 100).

Concomitant Use with Frusemide

In the risperidone placebo-controlled trials in elderly patients with dementia, a higher incidence of mortality was observed in patients treated with frusemide plus risperidone (7.3% [15/206]; mean age 89 years, range 75–97) compared to treatment with risperidone alone (3.1% [25/803]; mean age 84 years, range 70–96) or frusemide alone (4.1% [5/121]; mean age 80 years, range 67–90). The Odds ratio (95% exact confidence interval) was 1.82 (0.65, 5.14). The increase in mortality was observed in two of the four clinical trials.

No pathophysiological mechanism has been clearly identified to explain this finding and no consistent pattern for cause of death was observed. Nevertheless, caution should be exercised and the risks and benefits of this combination should be considered prior to the decision to treat. Irrespective of treatment, dehydration was an overall risk factor for mortality and should, therefore, be carefully avoided in elderly patients with dementia.

Cerebrovascular Adverse Events

In placebo-controlled trials in elderly patients with dementia there was a significantly higher incidence of cerebrovascular adverse events, such as stroke (including fatalities) and transient ischaemic attacks in patients (mean age 85 years, range 73–97) treated with risperidone compared to patients treated with placebo. The pooled data from six placebo-controlled trials in mainly elderly patients (> 65 years of age) with dementia showed that cerebrovascular adverse events (serious and non-serious combined) occurred in 3.3% (33/989) of patients treated with risperidone and 1.2% (8/693) of patients treated with placebo. The Odds ratio (95% exact confidence interval) was 2.96 (1.33, 7.45).

Orthostatic Hypotension

Due to the alpha-blocking activity of risperidone, orthostatic hypotension can occur, especially during the initial dose-titration period. Clinically significant hypotension has been observed postmarketing with concomitant use of risperidone and antihypertensive treatment. Risperidone should be used with caution in patients with known cardiovascular disease (e.g. heart failure, myocardial infarction, conduction abnormalities, dehydration, hypovolemia, or cerebrovascular disease), and the dosage should be gradually titrated as recommended (see DOSAGE AND ADMINISTRATION). A dose reduction should be considered if hypotension occurs. Special care should be taken in patients taking medications to lower blood pressure.

Use in Patients with Concomitant Illness

Patients with a history of clinically significant cardiac disorders were excluded from clinical trials. As clinical experience is limited, risperidone should be used with caution in patients with known cardiovascular disease (e.g. heart failure, myocardial infarction and conduction abnormalities) and other conditions (such as dehydration, hypokalaemia and hypovolaemia).
Tardive Dyskinesia

Tardive dyskinesia (TD), a syndrome consisting of potentially irreversible, involuntary dyskinetic movements may develop in patients treated with conventional neuroleptics. Although this syndrome of TD appears to be most prevalent in the elderly, especially elderly females, it is impossible to predict at the onset of treatment which patients are likely to develop TD.

It has been suggested that the occurrence of parkinsonian side effects is a predictor for the development of TD. In clinical studies, the observed incidence of drug-induced Parkinsonism was lower with risperidone than with haloperidol. In the optimal clinical dose-range, the difference between risperidone and haloperidol was significant. Therefore, the risk of developing TD may be less with risperidone. The risk of developing TD and the likelihood that it will become irreversible are believed to increase as the duration of treatment and the total cumulative dose of antipsychotic drugs administered to the patient increase. However, the syndrome can develop, although less commonly, after relatively brief periods of treatment at low doses. There is no known treatment for an established case of TD. The syndrome may remit partially or completely if antipsychotic medicine treatment is withdrawn.

Antipsychotic medicine treatment itself, however, may suppress the signs and symptoms of TD, thereby masking the underlying process. The effect of symptom suppression upon the long-term course of TD is unknown. In view of these considerations, risperidone should be prescribed in a manner that is most likely to minimise the risk of TD. As with any antipsychotic medicine, risperidone should be reserved for patients who appear to be obtaining substantial benefit from the medicine. In such patients, the smallest dose and the shortest duration of treatment should be sought. The need for continued treatment should be reassessed periodically. If signs and symptoms of TD appear in a patient on antipsychotics, medicine discontinuation should be considered. However, some patients may require treatment despite the presence of this syndrome.

Neuroleptic Malignant Syndrome

Neuroleptic malignant syndrome (NMS) is a potentially fatal symptom complex that has been reported in association with antipsychotic drugs, including risperidone.

The clinical manifestations of NMS are hyperthermia, muscle rigidity, altered mental status (including catatonic signs) and evidence of autonomic instability (irregular pulse or blood pressure, tachycardia, cardiac arrhythmias and diaphoresis). Additional signs may include elevated creatine phosphokinase (CPK) levels, myoglobinuria (rhabdomyolysis) and acute renal failure.

In arriving at a diagnosis, it is important to identify cases where the clinical presentation includes both serious medical illness (e.g. pneumonia, systemic infection, etc) and untreated or inadequately treated extrapyramidal signs and symptoms (EPS). Other important considerations in the differential diagnosis include central anticholinergic toxicity, heat stroke, drug fever and primary central nervous system pathology.

The management of NMS should include:
1. the immediate discontinuation of all antipsychotic medicines and other medicines not essential to current therapy;
2. intensive symptomatic treatment and medical monitoring; and
3. treatment of any concomitant serious medical problems for which specific treatments are available. There is no general agreement about specific pharmacological treatment regimens for uncomplicated NMS.

If a patient requires antipsychotic medicine treatment after recovery from NMS, the potential reintroduction of this therapy should be carefully considered. The patient should be carefully monitored since recurrences of NMS have been reported.

Seizures

Classical neuroleptics are known to lower the seizure threshold. Risperidone has not been studied in patients who also have epilepsy. In clinical trials, seizures have occurred in a few risperidone-treated patients. Therefore, caution is recommended when treating patients having a history of seizures or other predisposing factors.

Parkinson’s Disease / Dementia with Lewy Bodies

Physicians should weigh the risks versus benefits when prescribing antipsychotics, including risperidone, to patients with Parkinson’s disease or Dementia with Lewy bodies (DLB) since both groups may be at increased risk of Neuroleptic malignant syndrome as well as having an increased sensitivity to antipsychotic medications. Manifestation of this increased sensitivity can include confusion, obtundation, postural instability with frequent falls, in addition to extrapyramidal symptoms.
Hyperglycaemia and Diabetes Mellitus

Hyperglycaemia, in some cases extreme and associated with ketoacidosis or hyperosmolar coma or death, has been reported in patients treated with atypical antipsychotics including risperidone. Assessment of the relationship between atypical antipsychotic use and glucose abnormalities is complicated by the possibility of an increased background risk of diabetes mellitus in patients with schizophrenia and the increasing incidence of diabetes mellitus in the general population. Given these confounders, the relationship between atypical antipsychotic use and hyperglycaemia related adverse events is not completely understood. However, epidemiological studies suggest an increased risk of treatment-emergent hyperglycaemia-related adverse events in patients treated with atypical antipsychotics. Precise risk estimates for hyperglycaemia related adverse events in patients treated with atypical antipsychotics are not available.

Patients with an established diagnosis of diabetes mellitus who are started on atypical antipsychotics should be monitored regularly for worsening of glucose control. Patients with risk factors for diabetes mellitus (e.g. obesity, family history of diabetes) who are starting treatment with atypical antipsychotics should undergo fasting blood glucose testing at the beginning of treatment and periodically during treatment. Any patient treated with atypical antipsychotics should be monitored for symptoms of hyperglycaemia including polydipsia, polyuria, polyphagia and weakness. Patients who develop symptoms of hyperglycaemia during treatment with atypical antipsychotics should undergo fasting blood glucose testing. In some cases, hyperglycaemia has resolved when the atypical antipsychotic was discontinued; however, some patients required continuation of antidiabetic treatment despite discontinuation of the suspect medicine.

QT Interval

As with other antipsychotics, caution should be exercised when risperidone is prescribed in patients with a history of cardiac arrhythmias, in patients with congenital long QT syndrome, and in concomitant use with drugs known to prolong the QT interval.

Other Precautions

Premenopausal women who develop secondary amenorrhoea of greater than six months duration should receive appropriate preventive therapy to avoid hypo-oestrogenic bone loss.

Risperidone may interfere with activities requiring mental alertness. Therefore, patients should be advised not to drive or operate machinery until their individual susceptibility is known.

Patients may be advised to refrain from excessive eating in view of the possibility of weight gain.

For the conduct disorder indication, effects on sexual maturation and gonadal function in children and adolescents have not been evaluated beyond 12 months in relation to long-term treatment.

Safety data beyond 12 months is lacking in relation to the effect of long-term treatment for the conduct disorder indication.

Use in Patients with Renal Impairment

Since clinical experience is lacking in this patient population, risperidone should be used with caution until further experience is gained. For renally-impaired schizophrenic patients, it is recommended to halve both the starting dose and the subsequent dose increments in patients with renal insufficiency.

Use in Patients with Hepatic Impairment

Since clinical experience is lacking in this patient population, risperidone should be used with caution until further experience is gained. For hepatically-impaired schizophrenic patients, it is recommended to halve both the starting dose and the subsequent dose increments in patients with hepatic insufficiency. In patients with known hepatic disease, it is advised to monitor the hepatic function.

Effects on Fertility

Risperidone impaired mating, but not fertility, in Wistar rats at doses 0.2 to 5 times the maximum human dose on a mg/m² basis. The effect appeared to be in females since impaired mating behaviour was not noted when males only were treated. In repeat dose toxicity studies in Beagle dogs, risperidone at dose of 1 to 17 times the maximum human dose on a mg/m² basis was associated with adverse effects on the male reproductive system (inhibited ejaculation, incomplete spermatogenesis, reduced sperm motility and concentration, reduced gonadal and prostatic weight, prostatic immaturity, decreased serum testosterone). Serum testosterone and sperm parameters partially recovered but remained decreased after treatment was discontinued. No-effect doses were not determined in either rat or dog.
Use in Pregnancy (Category C)
The safety of risperidone during human pregnancy has not been established.

Although in experimental animals, risperidone did not show direct reproductive toxicity, some indirect, prolactin and CNS mediated effects were observed. No teratogenic effect was noted in rats and rabbits following oral administration of risperidone during the period of organogenesis at doses up to 9 times the human dose on a mg/m² basis.

Non-teratogenic class effect
Neonates exposed to antipsychotics drugs including risperidone during the third trimester of pregnancy are at risk of experiencing extrapyramidal neurological disturbances and/or withdrawal symptoms following delivery. There have been post-market reports of agitation, hypertonia, hypotonia, tremor, somnolence, respiratory distress and feeding disorder in these neonates. These complications have varied in severity; while in some cases symptoms have been self-limitied, in other cases neonates have required additional medical treatment or monitoring.

Risperidone should be used during pregnancy only if the anticipated benefit outweighs the risk, and the administered dose and duration of treatment should be as low and short as possible.

Category C: Drugs which, owing to their pharmacological effects, have caused or may be suspected of causing, harmful effects on the human fetus or neonate without causing malformations. These effects may be reversible. Accompanying texts should be consulted for further details.

Use in Lactation
Risperidone and 9-hydroxy-risperidone are excreted in human breast milk. Women receiving risperidone should not breastfeed.

In rats oral administration of risperidone during late gestation and lactation was associated with an increase in pup deaths during the first 4 days of lactation at doses 0.2 to 5 times the maximum human dose on a mg/m² basis (a no-effect dose was not determined) and with reduced pup weight gain at doses 5-fold or greater than the maximum recommended human dose on a mg/m² basis. It is not known whether these effects resulted from a direct effect on the foetuses and pups and/or to an effect on the dams. There were also increases in stillborn rat pups at an oral dose 2.5 to 5 times the maximum human dose on a mg/m² basis.

Use in Children
Experience is lacking in children with schizophrenia aged less than 15 years. There are also insufficient preclinical data to adequately define the safety of risperidone in young children.

For information on the use of risperidone in children 5 years and older in the treatment of conduct disorder, see CLINICAL TRIALS section.

Use in the Elderly
For elderly schizophrenic patients, it is recommended to halve both the starting dose and the subsequent dose increments in geriatric patients.

Carcinogenicity
Risperidone was administered in the diet to Swiss albino mice for 18 months and to Wistar rats for 25 months at doses equivalent to 0.3, 1.3 and 5 times the maximum human dose of 10 mg/day (mice) or 0.6, 2.5 and 10 times the maximum human dose (rats) on a mg/m² basis. There were statistically significant increases in pituitary gland adenomas in female mice and endocrine pancreas adenomas in male rats at the two highest dose levels, and in mammary gland adenocarcinomas at all dose levels in female mice and female rats and at the highest dose in male rats.

Antipsychotic medicines have been shown to chronically elevate prolactin levels in rodents. Serum prolactin levels were not measured during the risperidone carcinogenicity studies; however, measurements during subchronic toxicity studies showed that risperidone elevated serum prolactin levels 5 to 6-fold in mice and rats at the same doses used in the carcinogenicity studies. An increase in mammary, pituitary and endocrine pancreas neoplasms has been found in rodents after chronic administration of other dopamine receptor antagonists and is considered to be prolactin mediated.

The relevance for human risk of the findings of prolactin mediated endocrine tumours in rodents is unknown. In controlled clinical trials, risperidone elevated serum prolactin levels more than haloperidol, although to date neither clinical studies nor epidemiological studies have shown an association between chronic administration of these medicines and mammary tumorigenesis.
However, since tissue culture experiments indicate that approximately one-third of human breast cancers are prolactin dependent in vitro, risperidone should be used cautiously in patients with previously detected breast cancer or in patients with pituitary tumours. Possible manifestations associated with elevated prolactin levels are amenorrhoea, galactorrhoea and menorrhagia (see ADVERSE EFFECTS).

Genotoxicity
No evidence of genotoxicity was observed in assays for DNA damage, gene mutations or chromosomal damage.

Interactions with Other Medicines
The risks of using risperidone in combination with other medicines have not been systematically evaluated. Given the primary central nervous system effects of risperidone, it should be used with caution in combination with other centrally acting medicines. Risperidone may antagonise the effect of levodopa and other dopamine agonists. Tricyclic antidepressants may potentiate the postural hypotensive effect of risperidone.

Clinically significant hypotension has been observed postmarketing with concomitant use of risperidone and antihypertensive treatment.

Caution is advised when prescribing risperidone with drugs known to prolong the QT interval.

A formal drug-drug interaction study to investigate the effect of risperidone on carbamazepine was not performed; however the effect of carbamazepine as adjunctive treatment to risperidone was investigated in a pharmacokinetic study. In this study, patients were stabilized on a risperidone dose of 3 mg twice daily, and carbamazepine was administered from 3 weeks (Days 22 to 42) at a dose that was adjusted for the therapeutic concentration (5 to 12 μg/mL, average dose 573 ± 168 mg/day).

Carbamazepine serum concentrations were determined at the beginning and at the end of the period of coadministration of the 2 compounds. The results showed that co-administration of risperidone with carbamazepine did not affect the serum concentrations of carbamazepine during the observation period of 3 weeks. The values were all within the therapeutic range of 5 to 12 μg/mL.

Carbamazepine has been shown to decrease the plasma levels of risperidone plus 9-hydroxy-risperidone. Similar effects may be observed with other CYP3A4 hepatic enzyme inducers. When carbamazepine or other CYP 3A4 hepatic enzyme inducers are initiated or discontinued, the physician should re-evaluate the dosing of risperidone.

Topiramate modestly reduces the bioavailability of risperidone, but not that of risperidone plus 9-hydroxy-risperidone.

Quinidine, phenothiazines, tricyclic antidepressants and some beta-blockers may increase the plasma concentrations of risperidone but not those of risperidone plus 9-hydroxy-risperidone (see Pharmacokinetics).

In patients with schizophrenia receiving risperidone 3 mg twice daily for 28 days, the addition of amitriptyline initially at 50 mg twice daily, increasing to 100 mg twice daily for the last 6 days of the study, produced relative increases in the 0 - 12 hr AUC of 1.21 ± 0.35, 1.15 ± 0.36 and 1.16 ± 0.34 and Cmax of 1.17 ± 0.33, 1.11 ± 0.43 and 1.11 ± 0.38 for risperidone, 9-hydroxy-risperidone and risperidone plus 9-hydroxy-risperidone, respectively. These modest increases do not necessitate dose modification.

In volunteer studies, a single 1 mg risperidone dose was administered with cimetidine 400 mg twice daily or ranitidine 150 mg twice daily. Cimetidine produced a relative increase in AUC_{0-12 hr} of 1.95 ± 0.78, 1.01 ± 0.25 and 1.15 ± 0.28 for risperidone, 9-hydroxy-risperidone and risperidone plus 9-hydroxy-risperidone, respectively. Relative Cmax increases were 1.90 ± 0.95, 0.95 ± 0.21 and 1.24 ± 0.27.

Co-administration of ranitidine produced a relative increase of 1.35 ± 0.32, 1.23 ± 0.44 and 1.25 ± 0.39 in AUC_{0-12 hr} and of Cmax of 1.45 ± 0.61, 1.28 ± 0.37 and 1.36 ± 0.35. Dose modification is not considered to be necessary.

Paroxetine and fluoxetine are potent CYP2D6 inhibitors. Co-administration of fluoxetine produced relative increases of 1.63 ± 0.43, 1.54 ± 0.54 and 1.40 ± 0.24 in C_{min}, C_{max} and AUC_{0 to 12 hr} of risperidone plus 9-hydroxy-risperidone. Administration of paroxetine 20 mg/day for 4 weeks to patients stabilised on risperidone 4 - 8 mg/day produced a relative increase of 1.51 ± 0.34 in C_{min} of risperidone plus 9-hydroxy-risperidone. When concomitant fluoxetine or paroxetine is initiated or discontinued, the physician should re-evaluate the dose of risperidone.
Erythromycin, a CYP3A4 inhibitor, does not change the pharmacokinetics of risperidone and risperidone plus 9-hydroxy-risperidone. The cholinesterase inhibitors galantamine and donepezil do not show a clinically relevant effect on the pharmacokinetics of risperidone and risperidone plus 9-hydroxy-risperidone.

Risperidone does not show a clinically relevant effect on the pharmacokinetics of lithium, valproate or digoxin.

In vitro studies, in which risperidone was given in the presence of various, highly protein-bound agents indicated that clinically relevant changes in protein binding would not occur either for risperidone or for any of the medicines tested.

See PRECAUTIONS, Elderly Patients with Dementia, regarding increased mortality due to interaction of risperidone and concomitant frusemide.

ADVERSE EFFECTS

The most frequently reported ADRs (incidence ≥10%) are: Parkinsonism, Headache, and Insomnia.

The following are all the ADRs that were reported in clinical trials and postmarketing. The following terms and frequencies are applied: very common (≥ 1/10), common (≥ 1/100 to < 1/10), uncommon (≥ 1/1000 to < 1/100), rare (≥ 1/10,000 to < 1/1000), very rare (< 1/10,000), and not known (cannot be estimated from the available clinical trial data).

Adverse Drug Reactions by System Organ Class and Frequency

<table>
<thead>
<tr>
<th>Infections and infestations</th>
<th>Common</th>
<th>Uncommon</th>
<th>Rare</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nasopharyngitis, Upper respiratory tract infection, Urinary tract infection, Influenza, Rhinitis, Bronchitis, Pneumonia</td>
<td>Sinusitis, Viral infection, Pharyngitis, Ear infection, Tonsillitis, Cellulitis, Otitis media, Eye infection, Localised infection, Acarodermatitis, Respiratory tract infection, Cystitis, Onychomycosis, Bronchopneumonia</td>
<td>Otitis media chronic, Tracheobronchitis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Blood and lymphatic disorders</th>
<th>Common</th>
<th>Uncommon</th>
<th>Rare</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anemia, Thrombocytopenia</td>
<td>Granulocytopenia</td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td>Hypersensitivity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drug hypersensitivity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not known</td>
<td>Anaphylactic reaction</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Endocrine disorders</th>
<th>Common</th>
<th>Uncommon</th>
<th>Rare</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hyperprolactinemia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not known</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metabolism and nutrition disorders</th>
<th>Common</th>
<th>Uncommon</th>
<th>Very rare</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Increased appetite, Decreased appetite</td>
<td>Anorexia, Polydipsia</td>
<td>Diabetic ketoacidosis</td>
</tr>
<tr>
<td>Not known</td>
<td></td>
<td></td>
<td>Water intoxication</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Psychiatric disorders</th>
<th>Very common</th>
<th>Common</th>
<th>Uncommon</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Insomnia</td>
<td>Agitation, Anxiety, Sleep disorder</td>
<td>Confusional state, Mania, Nervousness, Libido decreased, Middle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>insomnia, Listless</td>
</tr>
<tr>
<td>Rare</td>
<td>Anorgasmia, Blunted affect</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nervous system disorders</th>
<th>Very common</th>
<th>Common</th>
<th>Uncommon</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Parkinsonism, Headache</td>
<td>Somnolence, Akathisia, Sedation, Dizziness, Tremor, Dystonia, Lethargy, Dyskinesia</td>
<td>Drooling, Dysarthria, Disturbance in attention, Hypersonomnia, Dizziness postural, Syncope, Balance disorder, Tardive dyskinesia, Depressed level of consciousness, Speech disorder, Cerebrovascular accident, Coordination abnormal, Unresponsive to stimuli, Hypoaesthesia, Transient ischemic attack, Loss of consciousness</td>
</tr>
<tr>
<td>Rare</td>
<td>Cerebral ischemia, Cerebrovascular disorder, Movement disorder, Neuroleptic malignant syndrome, Diabetic coma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eye disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common</td>
<td>Vision blurred</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncommon</td>
<td>Conjunctivitis, Ocular hyperaemia, Eye discharge, Eye swelling, Dry eye, Eyelid oedema, Lacrimation increased, Photophobia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rare</td>
<td>Eyelid margin crusting, Visual acuity reduced, Eye rolling, Glaucoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ear and labyrinth disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncommon</td>
<td>Ear pain, Tinnitus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common</td>
<td>Tachycardia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncommon</td>
<td>Palpitations, Sinus tachycardia, Atrial fibrillation, Sinus bradycardia, Atrioventricular block first degree, Bundle branch block left</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rare</td>
<td>Bundle branch block right, Atrioventricular block</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vascular disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncommon</td>
<td>Hypotension, Orthostatic hypotension, Flushing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory, thoracic, and mediastinal disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common</td>
<td>Cough, Nasal congestion, Pharyngolaryngeal pain, Epistaxis, Rhinorrhea, Dyspnoea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncommon</td>
<td>Wheezing, Sinus congestion, Productive cough, Dysphonia, Respiratory tract congestion, Pulmonary congestion, Pneumonia aspiration, Respiratory disorder, Rales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rare</td>
<td>Hyperventilation, Nasal edema, Sleep apnea syndrome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common</td>
<td>Vomiting, Constipation, Nausea, Diarrhoea, Salivary hypersecretion, Abdominal pain upper, Dyspepsia, Dry mouth, Abdominal pain, Stomach discomfort</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncommon</td>
<td>Dysphagia, Abdominal discomfort, Gastritis, Faecal incontinence, Faecaloma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rare</td>
<td>Lip swelling, Cheilitis, Intestinal obstruction, Aptyalism, Pancreatitis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatobiliary disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rare</td>
<td>Jaundice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common</td>
<td>Rash, Erythema</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncommon</td>
<td>Dry skin, Pruritis, Acne, Skin lesion, Skin discoloration, Angioedema, Hyperkeratosis, Alopecia, Rash erythematous, Skin disorder, Seborrhoeic dermatitis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rare</td>
<td>Dandruff, Rash papular, Rash maculo-papular, Rash generalized</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal, connective tissue, and bone disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common</td>
<td>Arthralgia, Back pain, Pain in extremity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncommon</td>
<td>Myalgia, Neck pain, Joint swelling, Posture abnormal, Joint stiffness, Muscular weakness, Musculoskeletal chest pain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rare</td>
<td>Rhabdomyolysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renal and urinary disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common</td>
<td>Enuresis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncommon</td>
<td>Urinary incontinence, Dysuria, Pollakiuria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reproductive system and breast disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncommon</td>
<td>Erectile dysfunction, Galactorrhea, Amenorrhea, Gynecomastia, Ejaculation failure, Ejaculation disorder, Menstruation irregular, Vaginal discharge, Sexual dysfunction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rare</td>
<td>Retrograde ejaculation, Menstrual disorder, Breast enlargement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common</td>
<td>Fatigue, Pyrexia, Oedema peripheral, Asthenia, Chest pain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncommon</td>
<td>Gait disturbance, Sluggishness, Malaise, Influenza like illness, Pitting oedema, Oedema, Thirst, Chest discomfort, Chills, Feeling abnormal, Discomfort, Face oedema</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rare</td>
<td>Peripheral coldness, Drug withdrawal syndrome, Adverse drug reaction, Generalised oedema, Hypothermia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investigations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common</td>
<td>Weight increased, Blood prolactin increased</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncommon</td>
<td>Body temperature increased, Alanine aminotransferase increased, Aspartate aminotransferase increased, Heart rate increased, White blood cell count decreased, Blood glucose increased, Blood</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
creatinine phosphokinase increased, Electrocardiogram abnormal, Eosinophil count increased, Hemoglobin decreased, Electrocardiogram QT prolonged, Hematocrit decreased, Blood pressure Decreased, Transaminases increased, Body temperature decreased.

The following is a list of additional ADRs that have been reported with risperidone long-acting injectable formulation (excluding injection-related ADRs) but were not identified as ADRs in clinical studies with oral risperidone.

Additional Adverse Drug Reactions Reported With Risperidone Long Acting Injection That Were Not Identified as Adverse Drug Reactions With Oral Risperidone, by System Organ Class

<table>
<thead>
<tr>
<th>Infections and Infestations</th>
<th>Lower respiratory tract infection, Infection, Gastroenteritis, Subcutaneous abscess</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood and Lymphatic Disorders</td>
<td>Neutropenia</td>
</tr>
<tr>
<td>Psychiatric Disorders</td>
<td>Depression</td>
</tr>
<tr>
<td>Nervous System Disorders</td>
<td>Paresthesia, Convulsion</td>
</tr>
<tr>
<td>Eye Disorders</td>
<td>Blefarospasm</td>
</tr>
<tr>
<td>Ear and Labyrinth Disorders</td>
<td>Vertigo</td>
</tr>
<tr>
<td>Cardiac Disorders</td>
<td>Bradycardia</td>
</tr>
<tr>
<td>Vascular Disorders</td>
<td>Hypertension</td>
</tr>
<tr>
<td>Gastrointestinal Disorders</td>
<td>Toothache, Tongue spasm</td>
</tr>
<tr>
<td>Skin and Subcutaneous Tissue Disorders</td>
<td>Eczema</td>
</tr>
<tr>
<td>Musculoskeletal, Connective Tissue, and Bone Disorders</td>
<td>Buttock pain</td>
</tr>
<tr>
<td>General Disorders and Administration Site Conditions</td>
<td>Pain</td>
</tr>
<tr>
<td>Investigations</td>
<td>Weight decreased, Gamma-glutamyltransferase increased, Hepatic enzyme increased</td>
</tr>
<tr>
<td>Injury and Poisoning</td>
<td>Fall</td>
</tr>
</tbody>
</table>

Adverse drug reactions that were reported with higher incidence in elderly patients with dementia or pediatric patients, compared with adult populations, are described below:

Additional Information on Special Populations

Elderly patients with dementia:
The following ADRs were reported with a frequency ≥5% in elderly patients with dementia and with at least twice the frequency seen in other adult populations: urinary tract infection, peripheral edema, lethargy, and cough.

Paediatric patients:
The following ADRs were reported with a frequency ≥5% in paediatric patients (5 to 17 years) and with at least twice the frequency seen in clinical trials in adults: somnolence/sedation, fatigue, headache, increased appetite, vomiting, dizziness, upper abdominal pain, cough, pyrexia, tremor, diarrhea, and enuresis.

DOSAGE AND ADMINISTRATION

Schizophrenia
Studies on the efficacy and safety of risperidone have been performed predominantly in patients with schizophrenia. The pivotal studies lasted up to 8 weeks, but more than 600 patients have been treated for at least 12 months.

Switching from Other Antipsychotic
When medically appropriate, gradual discontinuation of the previous treatment is recommended while risperidone therapy is initiated. In the case of depot injections, it is recommended that risperidone not be administered until the next scheduled injection.

Alterations in requirements of antiparkinson therapy may be required in patients switching to risperidone. These requirements should be evaluated periodically.
Adults
Risperidone may be given once or twice daily.

Patients, whether acute or chronic, may start with risperidone 1 mg b.i.d. The dosage may be increased on the second day to 2 mg b.i.d. From then on the dosage can be maintained unchanged, or further individualised, if needed. In some patients a slower titration phase and lower starting and maintenance dose may be appropriate. Patients should be titrated gradually in view of the risk of first dose orthostatic hypotension.

In stable patients, risperidone may be given once daily or twice daily, with a recommended daily dose between 4 and 6 mg. However, some patients may benefit from higher doses.

Doses above 5 mg b.i.d have not been shown to be superior in efficacy to lower doses and may cause extrapyramidal symptoms.

A benzodiazepine may be added to risperidone when additional sedation is required.

Elderly
A starting dose of 0.5 mg b.i.d is recommended in view of the increased risk of first dose orthostatic hypotension. This dosage can be individually adjusted with 0.5 mg b.i.d increments to 1 to 2 mg b.i.d.

Renal or Hepatic Impairment
A starting dose of 0.5 mg b.i.d is recommended. This dosage can be individually adjusted with 0.5 mg b.i.d increments to 1 to 2 mg b.i.d.

Risperidone should be used with caution in this group of patients until further experience is gained.

Children
Experience is lacking in children with schizophrenia aged less than 15 years.

Bipolar Mania
Risperidone should be administered on a once daily basis, starting with 2 mg.

Dosage adjustments, if indicated, should occur at intervals of not less than 24 hours and in dosage increments of 1 mg/day. A dosing range of between 2–6 mg/day is recommended.

Behavioural Disturbances in Dementia
A starting dose of 0.25 mg b.i.d is recommended. This dosage can be individually adjusted by increments of 0.25 mg b.i.d, not more frequently than every other day, if needed. The optimum dose is 0.5 mg b.i.d for most patients. Some patients, however, may benefit from doses up to 1 mg b.i.d.

Once patients have reached their target dose, a once daily dosing regimen can be considered.

As with all symptomatic treatments, the continued use of risperidone must be evaluated and justified on an ongoing basis.

Conduct and Other Disruptive Behaviour Disorders
Subjects ≥ 50 kg
A starting dose of 0.5 mg once daily is recommended. This dosage can be individually adjusted by increments of 0.5 mg once daily not more frequently than every other day, if needed. The optimum dose is 1 mg once daily for most patients. Some patients, however, may benefit from doses up to 1.5 mg once daily.

Subjects < 50 kg
A starting dose of 0.25 mg once daily is recommended. This dosage can be individually adjusted by increments of 0.25 mg once daily not more frequently than every other day, if needed. The optimum dose is 0.5 mg once daily for most patients. Some patients however may benefit from 0.25 mg once daily while others may require 0.75 mg once daily.

As with all symptomatic treatments, the continued use of risperidone must be evaluated and justified on an ongoing basis.

Experience is lacking in children aged less than 5 years.
Behavioural Disorders Associated with Autism

Risperidone can be administered once or twice daily. Risperidone should be administered based on bodyweight. Dosing should begin at 0.25 mg or 0.5 mg/day based upon weight (see Table 4 for relative weight categories). On day 4 of treatment the dose may be increased up to 0.5 or 1.0 mg/day. This dose should be maintained and response assessed at approximately day 14. Only in patients not achieving sufficient clinical response should additional dose increases be considered. Dose increases may proceed at ≥ 2 week intervals in increments of 0.25 mg for patients < 20 kg or 0.5 mg for patients ≥ 20 kg. In clinical studies the maximum dose studied did not exceed a total daily dose of 1.5 mg in patients < 20 kg, 2.5 mg in patients ≥ 20 kg or 3.5 mg in patients > 45kg.

Doses by total mg/day and by mg/kg/day for starting doses and incremental increases are shown in the following tables

Doses of Risperidone in Paediatric Patients with Autistic Disorder (by total mg/day)

<table>
<thead>
<tr>
<th>Weight Categories</th>
<th>Days 1–3</th>
<th>Days 4–14+</th>
<th>Increments if Dose Increases are Needed</th>
<th>Dose Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 20 kg</td>
<td>0.25 mg</td>
<td>0.5 mg</td>
<td>+ 0.25 mg at ≥ 2 weeks intervals</td>
<td>0.5 – 1.5 mg</td>
</tr>
<tr>
<td>≥ 20 kg</td>
<td>0.5 mg</td>
<td>1.0 mg</td>
<td>+ 0.5 mg at ≥ 2 weeks intervals</td>
<td>1.0 – 2.5 mg</td>
</tr>
</tbody>
</table>

* Subjects weighing > 45 kg may require higher doses: maximum dose studied was 3.5 mg/day

For prescribers preferring to dose on a mg/kg/day the following guidance is provided:

Doses of Risperidone in Paediatric Patients with Autistic Disorder (by total mg/kg/day)

<table>
<thead>
<tr>
<th>Weight Categories</th>
<th>Days 1–3</th>
<th>Days 4–14+</th>
<th>Increments if Dose Increases are Needed</th>
<th>Dose Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>0.01 mg/kg/day</td>
<td>0.02 mg/kg/day</td>
<td>+ 0.01 mg/kg/day at ≥ 2 weeks intervals</td>
<td>0.02 – 0.06 mg/kg/day</td>
</tr>
</tbody>
</table>

Patients experiencing somnolence may benefit from a switch in dosing from once daily to either once daily at bedtime or twice daily.

Once sufficient response has been achieved and maintained, consideration may be given to gradually lowering the dose to achieve the optimum balance of efficacy and safety. There is insufficient evidence from controlled trials to indicate how long the patient with autistic disorder should be treated with risperidone.
OVERDOSAGE

Symptoms
In general, reported signs and symptoms have been those resulting from an exaggeration of the medicine's known pharmacological effects. These include drowsiness and sedation, tachycardia and hypotension, and extrapyramidal symptoms.

In overdose, QT prolongation and convulsions have been reported. Torsades de pointes has been reported in association with combined overdose of oral risperidone and paroxetine.

Treatment
Establish and maintain a clear airway and ensure adequate oxygenation and ventilation. Gastric lavage (after intubation if the patient is unconscious) and administration of activated charcoal together with a laxative should be considered. Cardiovascular monitoring should commence immediately and should include continuous electrocardiographic monitoring to detect possible arrhythmias.

There is no specific antidote to risperidone. Therefore, appropriate supportive measures should be instituted. Hypotension and circulatory collapse should be treated with appropriate measures such as intravenous fluids and/or sympathomimetic agents. In the case of severe extrapyramidal symptoms, anticholinergic medication should be administered. Close medical supervision and monitoring should continue until the patient recovers.

Contact the Poison Information Centre on 13 11 26 (Australia) for advice on the management of overdose.

PRESENTATION AND STORAGE CONDITIONS

APO-Risperidone 0.5 mg tablets:
Brownish-red, capsule-shaped film-coated tablets. Engraved “APO” on one side, “RI” score “.5” on the other side.

Blister packs of 20 tablets - AUST R number 127606.
Bottles of 20 tablets - AUST R number 127607 - not marketed.

APO-Risperidone 1 mg tablets:
White, capsule-shaped film-coated tablets. Engraved “APO” on one side, “RI” score “1” on the other side.

Blister packs of 60 tablets - AUST R number 127608.
Bottles of 60 tablets - AUST R number 127609 - not marketed.

APO-Risperidone 2 mg tablets:
Light orange, capsule-shaped film-coated tablets. Engraved “APO” on one side, “RI” score “2” on the other side.

Blister packs of 60 tablets - AUST R number 127610.
Bottles of 60 tablets - AUST R number 127611 - not marketed.

APO-Risperidone 3 mg tablets:
Beige, capsule-shaped film-coated tablets. Engraved “APO” on one side, “RI” score “3” on the other side.

Blister packs of 60 tablets - AUST R number 127612.
Bottles of 60 tablets - AUST R number 127613 - not marketed.

APO-Risperidone 4 mg tablets:
Light green, capsule-shaped film-coated tablets. Engraved “APO” on one side, “RI” score “4” on the other side.

Blister packs of 60 tablets - AUST R number 127615.
Bottles of 60 tablets - AUST R number 127617 - not marketed.

APO-Risperidone tablets are intended for oral administration. Each tablet contains 0.5 mg, 1 mg, 2 mg, 3 mg or 4 mg of risperidone.
In addition, each tablet contains the following inactive ingredients: lactose, cellulose microcrystalline, maize starch, magnesium stearate, hypromellose, hydroxypropylcellulose, macrogol 8000, titanium dioxide, iron oxide red (0.5 mg), sunset yellow FCF aluminium lake (2 mg), iron oxide yellow (3 mg and 4 mg) and indigo carmine aluminium lake (4 mg).

Blister packs: Store below 25°C.
Bottles: Store below 25°C. Protect from light.

NAME AND ADDRESS OF SPONSOR

Apotex Pty Ltd
ABN 52 096 916 148
66 Waterloo Road
North Ryde NSW 2113
Australia

Apotex Pty Ltd is the licensee of the registered trade marks APO and APOTEX from the registered proprietor, Apotex Inc.

Date of TGA approval: 24 September 2008

Date of most recent amendment: 31 March 2011