NAME OF THE MEDICINE

Topiramate.

Chemical Name: 2,3:4,5-bis-O-(1-methylethylidene)-β-D-fructopyranose sulfamate.

![Topiramate structure](image)

Molecular Formula: \( \text{C}_{12}\text{H}_{21}\text{NO}_{8}\text{S} \)

Molecular Weight: 339.36

CAS Registry Number: 97240-79-4

DESCRIPTION

Topiramate is a white crystalline powder with a bitter taste. Topiramate is most soluble in alkaline solutions containing sodium hydroxide or sodium phosphate and having a pH of 9 to 10. It is freely soluble in acetone, chloroform, dimethylsulfoxide and ethanol. The solubility in water is 9.8 mg/mL. Its saturated solution has a pH of 6.3.

PHARMACOLOGY

Topiramate is classified as a sulfamate substituted monosaccharide.

Pharmacokinetics

The pharmacokinetic profile of topiramate compared to other antiepileptic drugs shows a long plasma elimination half-life, linear pharmacokinetics, predominantly renal clearance, absence of significant protein binding and lack of clinically relevant active metabolites. Topiramate is not a potent inducer of drug metabolising enzymes.

It can be administered without regard to meals and routine monitoring of plasma topiramate concentrations is not necessary. In clinical studies, there was no consistent relationship between plasma concentrations and efficacy or adverse events.

Topiramate was rapidly and well absorbed and distributed in total body water following oral administration in animals. The same metabolic and elimination pathways were present as in human subjects. \( C_{\text{max}} \) values were similar to those obtained in human subjects but topiramate was more rapidly cleared in animals resulting in lower overall systemic exposure.

Absorption

Based on recovery of radioactivity from urine in humans, the mean extent of absorption of a 100 mg dose of \(^{14}\text{C}\)-topiramate was at least 81%. Following oral administration of 100 mg topiramate to healthy subjects, a mean peak plasma concentration (\( C_{\text{max}} \)) of approximately 2 µg/mL was achieved within two or three hours (\( T_{\text{max}} \)). The bioavailability of topiramate is not significantly affected by food.
**Distribution**

Generally 13–17% of topiramate is bound to plasma proteins. A low capacity binding site for topiramate in/on erythrocytes that is saturated at steady state has been observed. Following single dose administration, the volume of distribution varies inversely with dose. The mean apparent volume of distribution has been measured as 0.8 to 0.55 L/kg for a single dose range of 100 to 1,200 mg. There is a gender effect on the volume of distribution. Values for females are about 50% lower than those for males. This is attributed to the higher percent body fat in females and is of no clinical consequence.

**Metabolism**

Topiramate is not extensively metabolised (approx. 20%) in healthy volunteers. It is metabolised up to 50% in patients receiving concomitant antiepileptic therapy with known inducers of drug-metabolising enzymes. Six metabolites (formed through hydroxylation, hydrolysis and glucuronidation) have been isolated, characterised and identified from plasma, urine and faeces of humans. Each metabolite represents less than 3% of the total radioactivity excreted following administration of $^{14}$C-topiramate. Two metabolites, which retained most of the structure of topiramate, were tested and found to have little or no anticonvulsant activity.

**Excretion**

In humans, the major route of elimination of unchanged topiramate and its metabolites is via the kidney (at least 81% of the dose). Approximately 66% of a dose of $^{14}$C-topiramate was excreted unchanged in the urine within four days. Following twice a day dosing with 50 and 100 mg of topiramate, the mean renal clearance was approximately 18 mL/min and 17 mL/min, respectively. There is evidence of renal tubular reabsorption of topiramate. This is supported by studies in rats where topiramate was co-administered with probenecid and a significant increase in renal clearance of topiramate was observed. Overall, plasma clearance is approximately 20–30 mL/min in humans following oral administration.

Concomitant multiple-dose administration of topiramate, 100–400 mg twice a day, with phenytoin or carbamazepine shows dose proportional increases in plasma concentrations of topiramate.

Topiramate exhibits low intersubject variability in plasma concentrations and, therefore, has predictable pharmacokinetics. The pharmacokinetics of topiramate are linear at steady state with plasma clearance remaining constant and area under the plasma concentration curve (AUC) increasing in a dose proportional manner over a 200 to 800 mg daily oral dose range. Patients with normal renal function may take four to eight days to reach steady-state plasma concentrations. The mean $C_{\text{max}}$ following multiple, twice a day oral doses of 100 mg to healthy subjects was 6.76 µg/mL. Following administration of multiple doses of 50 and 100 mg of topiramate twice a day, the mean plasma elimination half-life was approximately 21 hours.

**Patients with Renal Impairment**

The plasma and renal clearance of topiramate are decreased in patients with impaired renal function (creatinine clearance < 60 mL/minute) and the plasma clearance is decreased in patients with end-stage renal disease. As a result, higher steady-state plasma concentrations are expected for a given dose in renally impaired patients compared to those with normal renal function. Topiramate is effectively removed from plasma by haemodialysis.

**Patients with Hepatic Impairment**

Plasma clearance of topiramate is decreased in patients with moderate to severe hepatic impairment.

**Use in the Elderly**

Plasma clearance of topiramate is unchanged in elderly subjects in the absence of underlying renal disease or hepatic impairment. Patients more than 71 years of age have not been studied.

**Use in Children Up to 12 years**

The pharmacokinetics of topiramate in children receiving topiramate as add-on therapy are linear. The clearance is independent of dose and steady-state plasma concentrations increase in proportion to dose. Hepatic enzyme-inducing antiepileptic drugs decrease the steady-state plasma concentrations. In comparison to adults, however, children have a higher clearance and shorter elimination half-life when topiramate is used as adjunctive therapy to both enzyme-inducing and nonenzyme-inducing antiepileptic drugs. Consequently, the plasma concentrations of topiramate for the same mg/kg dose may be lower in children compared to adults.
Pharmacodynamics

Three pharmacological properties of topiramate have been identified that may contribute to its anticonvulsant activity:

- Topiramate reduces the frequency at which action potentials are generated when neurons are subjected to a sustained depolarisation, which is indicative of a state dependent blockade of voltage sensitive sodium channels.
- Topiramate markedly enhances the activity of gamma-aminobutyric acid (GABA) at some types of GABA<sub>A</sub> receptors. This effect was not blocked by flumazenil, a benzodiazepine antagonist, nor did topiramate increase the duration of the channel open time, differentiating topiramate from barbiturates that modulate GABA<sub>A</sub> receptors. Because the antiepileptic profile of topiramate differs markedly from that of the benzodiazepines, it may modulate a benzodiazepine-insensitive subtype of GABA<sub>A</sub> receptor.
- Topiramate antagonises the ability of kainate to activate the kainate/AMPA subtype of excitatory amino acid (glutamate) receptors but has no apparent effect on the activity of N-methyl-D-aspartate (NMDA) at the NMDA receptor subtype.

In addition, topiramate inhibits some isoenzymes of carbonic anhydrase. This pharmacological effect is much weaker than that of acetazolamide, a known carbonic anhydrase inhibitor, and is not thought to be a major component of topiramate’s antiepileptic activity.

The mechanism(s) of action of topiramate in migraine prophylaxis is unknown.

CLINICAL TRIALS

Monotherapy

Epilepsy

Three double-blind, randomised, parallel group clinical trials were conducted to evaluate the efficacy and safety of topiramate given as monotherapy. Study YI and EPMN-104 evaluated the safety and efficacy of topiramate monotherapy using a dose-response design by comparing the low dose regimen with the high dose regimen. Study EPMN-105 compared topiramate monotherapy to carbamazepine or valproate in patients with newly diagnosed epilepsy.

In study YI, adults with refractory partial onset seizures (n = 48) were converted from their existing treatment to topiramate 100 mg/day or 1,000 mg/day as monotherapy. The high dose group was statistically superior to the low dose group for efficacy variables. 54% of high dose patients achieved monotherapy compared with 17% in the low dose group with the difference between the doses being statistically significant (p = 0.005). The mean time to exit was significantly greater in the high dose group (p = 0.002). The investigator and subject global evaluations of clinical response statistically favoured the high dose group (less than or equal to 0.002).

In Study EPMN-104, adult and paediatric patients with recently diagnosed epilepsy (n = 252) were randomised into the low dose (25 or 50 mg/day) or the high dose group (200 or 500 mg/day) based on their bodyweight. Overall, 54% of high dose patients and 39% of low dose patients were reported to be seizure-free during the double-blind phase (p = 0.022). The high dose group was also superior to the low dose group with respect to seizure frequency distribution (p = 0.008) and the difference in time to first seizure across three plasma topiramate concentration strata (p = 0.015).

In study EPMN-105, patients with newly diagnosed epilepsy (n = 613) were randomised to receive either 100 or 200 mg/day of topiramate or standard antiepileptic treatment (carbamazepine or valproate). Topiramate was at least as efficacious as carbamazepine or valproate in reducing seizures in these patients; the 95% confidence intervals for the difference between the two treatment groups were narrow and included zero, indicating that there were no statistically significant between group difference. The two treatment groups were also comparable with respect to all clinical utility and efficacy endpoints including time to exit, proportion of seizure free subjects and time to first seizure.

Patients (n = 207; 32 were aged less than or equal to 16 years) who completed the double-blind phase of study YI and EPMN-104 were enrolled in long-term extension studies, with the majority of patients receiving topiramate for two to five years. In these studies, sustained efficacy was demonstrated with long-term administration of topiramate as monotherapy. There was no significant change in dosage during the extension period and no indication that effectiveness of topiramate monotherapy diminished with continued exposure.
The safety profile of topiramate in monotherapy trials is consistent with that of the add-on trials.

Add-On Therapy

Epilepsy

Over 2,000 patients worldwide were involved in the clinical trials of topiramate as an add-on treatment in adults and children with the following type of epilepsy: partial onset seizures with or without secondary generalised seizures, primary generalised tonic-clonic seizures and seizures associated with Lennox-Gastaut syndrome. These trials were randomised, placebo controlled, double-blind, multicentre, parallel group studies in which patients were given topiramate or placebo as add-on treatment while they were receiving phenytoin, carbamazepine, primidone, phenobarbitone or valproic acid, as concomitant therapy.

These trials had 4 to 12 weeks as the ‘run in’ phases, several weeks of titration and then up to 12 weeks of stabilisation. Topiramate reduced monthly seizure rates and increased responder rates (fraction of patients with at least 50% seizure reduction) significantly compared to placebo. In addition, topiramate significantly reduced seizure severity in patients with Lennox-Gastaut syndrome.

No evidence of tolerance to topiramate has been demonstrated in humans.

In a pooled analysis of two clinical trials involving patients with primary generalised tonic-clonic epilepsy, topiramate (n = 79) was statistically better than placebo (n = 81) (p = 0.004). In these two trials, 17 patients who were 16 years or younger received topiramate.

There is limited clinical experience with topiramate at or above a daily dose of 1,000 mg. Comparative data or data on the safety and efficacy of using topiramate with lamotrigine, vigabatrin or gabapentin are not available. Elderly patients and patients with known or suspected coronary artery disease did not participate in these studies.

Migraine

The clinical development program to evaluate the efficacy of topiramate in the prophylaxis of migraine included four double-blind, placebo controlled, parallel group trials. Each trial started with a washout period (14 to 28 days) for subjects already taking prophylactic drugs, followed by a 28 day ‘run in’ phase, an eight week dose titration phase and a 12 or 18 week maintenance phase.

The pooled results of the two pivotal trials, evaluating topiramate doses of 50 (n = 233), 100 (n = 244) and 200 mg/day (n = 228), found a median percent reduction in average monthly migraine period rate of 35%, 51% and 49% respectively, compared to 21% for the pooled placebo group (n = 229). Notably 27% of patients administered topiramate 100 mg/day achieved at least a 75% reduction in migraine frequency, while 52% achieved at least a 50% reduction. Study MIGR-003 demonstrated that topiramate 100 mg/day was comparable in terms of efficacy to propranolol 160 mg/day. There was no statistically significant difference between the two groups in the primary efficacy endpoint or clinically significant 50% responder rate [43% for propranolol 160 mg/day, 37% for topiramate 100 mg/day (-6% difference, 95% CI (-17%, +6%), p = 0.28), 35% for topiramate 200 mg/day (-7% difference, 95% CI (-19%, +4%), p=0.17)].

Results from each trial are summarised in Table 1.
Table 1
Responder Rates
(at least a 50% reduction in average monthly migraine period compared to baseline - ITT)

<table>
<thead>
<tr>
<th>STUDY</th>
<th>PLACEBO</th>
<th>TOPIRAMATE 50 mg/day</th>
<th>TOPIRAMATE 100 mg/day</th>
<th>TOPIRAMATE 200 mg/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIGR–001</td>
<td>23%</td>
<td>36% p ≤ 0.05*</td>
<td>54% p ≤ 0.001*</td>
<td>52% p ≤ 0.001*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12%ª (1%, 24%)ª</td>
<td>31%ª (19%, 42%)ª</td>
<td>29%ª (17%, 41%)ª</td>
</tr>
<tr>
<td>MIGR–002</td>
<td>23%</td>
<td>39% p ≤ 0.05*</td>
<td>49% p ≤ 0.001*</td>
<td>47% p ≤ 0.001*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16%ª (4%, 28%)ª</td>
<td>26%ª (15%, 38%)ª</td>
<td>24%ª (12%, 36%)ª</td>
</tr>
<tr>
<td>MIGR–003</td>
<td>22%</td>
<td>37% p ≤ 0.05*</td>
<td>35% p ≤ 0.05*</td>
<td>35% p ≤ 0.05*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15%ª (4%, 25%)ª</td>
<td>13%ª (2%, 23%)ª</td>
<td>13%ª (2%, 23%)ª</td>
</tr>
<tr>
<td>CAPSS–155</td>
<td>34%</td>
<td></td>
<td>40% NS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6%ª (-8%, 19%)ª</td>
<td></td>
</tr>
</tbody>
</table>

* Nominal p-values for comparison of topiramate with placebo
ª difference - treatment responder rate of topiramate minus placebo
ªª 95% confidence interval - pairwise difference of topiramate minus placebo
ITT = intention to treat

The overall safety profile of topiramate observed in the migraine studies was generally consistent with that established for epilepsy therapy.

INDICATIONS

Epilepsy
Adults and children 2 years and over:
- as monotherapy in patients with newly diagnosed epilepsy;
- for conversion to monotherapy in patients with epilepsy;
- as add-on therapy in partial onset seizures (with or without secondary generalised seizures), primary generalised tonic-clonic seizures or drop attacks associated with Lennox-Gastaut syndrome.

Migraine
Prophylaxis of migraine headache in adults.

CONTRAINDICATIONS

Hypersensitivity to any component in this product.

PRECAUTIONS

In patients with or without history of seizures or epilepsy, antiepileptic drugs, including topiramate, should be withdrawn gradually to minimise the potential of increased seizure frequency. In clinical trials, daily dosages were decreased in weekly interval by 50-100 mg in adults with epilepsy and by 25-50 mg in adults receiving (topiramate at doses up to 100mg/day for migraine prophylaxis. In clinical trials of children, topiramate was gradually withdrawn over a 2-8 week period. In situations where rapid withdrawal of topiramate is medically required, appropriate monitoring is recommended.
Topiramate has not been studied in patients with a history of psychiatric disorders. Given the reported association of certain antiepileptic drugs and psychiatric disorders, topiramate should be used with caution in patients with a prior psychiatric history.

Adequate hydration while using topiramate is very important. Hydration can reduce the risk of nephrolithiasis. Proper hydration prior to and during activities such as exercise or exposure to warm temperatures may reduce the risk of heat-related adverse events.

**Nephrolithiasis**

Patients, especially those with a predisposition to nephrolithiasis, may be at increased risk for renal stone formation (none of 216 placebo patients versus 1.6% of 1,446 patients who had received topiramate were reported to have nephrolithiasis) and associated signs and symptoms such as renal colic, renal pain or flank pain.

Risk factors for nephrolithiasis include prior stone formation, a family history of nephrolithiasis and hypercalciuria, and male gender. None of these risk factors can reliably predict stone formation during topiramate treatment. In addition, patients taking other medication associated with nephrolithiasis may be at increased risk.

**Oligohydrosis and Hyperthermia**

Oligohydrosis (decreased sweating), infrequently resulting in hospitalisation, has been reported in association with topiramate use. Decreased sweating and an elevation in body temperature above normal characterised these cases. Some of the cases were reported after exposure to elevated environmental temperature.

The majority of the reports have been in children. Patients, especially paediatric patients, treated with topiramate should be monitored closely for evidence of decreased sweating and increased body temperature, especially in hot weather. Caution should be used when topiramate is prescribed with other drugs that predispose patients to heat related disorders; these drugs include, but are not limited to, other carbonic anhydrase inhibitors and drugs with anticholinergic activity.

Patients, especially paediatric patients, treated with topiramate should be monitored closely for evidence of decreased sweating and increased body temperature, especially in hot weather.

**Patients with Renal Impairment**

The major route of elimination of unchanged topiramate and its metabolites is via the kidney. Renal elimination is dependent on renal function and is independent of age. Patients with moderate or severe renal impairment may take 10 to 15 days to reach steady-state plasma concentrations as compared to four to eight days in patients with normal renal function.

In all patients the titration schedule should be guided by clinical outcome (i.e. seizure control, avoidance of side effects) and the knowledge that subjects with known renal impairment may require a longer time to reach steady state at each dose.

**Patients with Hepatic Impairment**

In hepatically-impaired patients, topiramate should be administered with caution as the clearance of topiramate may be decreased.

**Acute Myopia and Secondary Angle Closure Glaucma**

A syndrome consisting of acute myopia associated with secondary angle closure glaucoma has been reported in patients receiving topiramate. Symptoms include acute onset of decreased visual acuity and/or ocular pain. Ophthalmological findings can include myopia, anterior chamber shallowing, ocular hyperaemia (redness) and increased intraocular pressure. Mydriasis may or may not be present. This syndrome may be associated with suprachiliary effusion resulting in anterior displacement of the lens and iris, with secondary angle closure glaucoma. Symptoms typically occur within one month of initiating topiramate therapy.

In contrast to primary narrow angle glaucoma, which is rare under 40 years of age, secondary angle closure glaucoma associated with topiramate has been reported in paediatric patients as well as adults. Treatment includes discontinuation of topiramate as rapidly as possible in the judgment of the treating doctor and appropriate measures to reduce intraocular pressure. These measures generally result in a decrease in intraocular pressure.
Elevated intraocular pressure of any aetiology, if left untreated, can lead to serious sequelae including permanent vision loss.

**Metabolic Acidosis**

Hyperchloraemic non-anion gap metabolic acidosis (*i.e.* decreased serum bicarbonate below the normal reference range in the absence of respiratory alkalosis) is associated with topiramate treatment. This decrease in serum bicarbonate is due to the inhibitory effect of topiramate on renal carbonic anhydrase. Generally the decrease in bicarbonate occurs early in treatment, although it can occur at any time during treatment. These decreases are usually mild to moderate (average decrease of 4 mmol/L at doses of 100 mg/day or above in adults and at approximately 6 mg/kg/day in paediatric patients). Rarely, patients have experienced decreases to values below 10 mmol/L. Conditions or therapies that predispose to acidosis (such as renal disease, severe respiratory disorders, status epilepticus, diarrhoea, surgery, ketogenic diet or certain drugs) may be additive to the bicarbonate lowering effects of topiramate.

In adults the incidence of persistent treatment-emergent decreases in serum bicarbonate (levels of < 20 mmol/L at two consecutive visits or at the final visit) in controlled clinical trials for adjunctive treatment of epilepsy was 32% for 400 mg/day and 1% for placebo. Metabolic acidosis has been observed at doses as low as 50 mg/day. The incidence of a markedly abnormally low serum bicarbonate (*i.e.* absolute value < 17 mmol/L and > 5 mmol/L decrease from pretreatment) in these trials was 3% for 400 mg/day and 0% for placebo. Serum bicarbonate levels have not been systematically evaluated at daily doses greater than 400 mg/day. The incidence of persistent treatment emergent decreases in serum bicarbonate in placebo controlled trials for adults for prophylaxis of migraine was 44% for 200 mg/day, 39% for 100 mg/day, 23% for 50 mg/day and 7% for placebo. The incidence of a markedly abnormally low serum bicarbonate (*i.e.* absolute value < 17 mmol/L and > 5 mmol/L decrease from pretreatment) in these trials was 11% for 200 mg/day, 9% for 100mg/day, 2% for 50 mg/day and < 1% for placebo.

In paediatric patients (< 16 years of age) the incidence of persistent treatment-emergent decreases in serum bicarbonate in placebo controlled trials for adjunctive treatment of Lennox-Gastaut syndrome or refractory partial onset seizures was 67% for topiramate (at approximately 6 mg/kg/day) and 10% for placebo. The incidence of a markedly abnormally low serum bicarbonate (*i.e.* absolute value < 17 mmol/L and > 5 mmol/L decrease from pretreatment) in these trials was 11% for topiramate and 0% for placebo. Cases of moderately severe metabolic acidosis have been reported in patients as young as 5 months old especially at daily doses above 5 mg/kg/day.

Some manifestations of acute or chronic metabolic acidosis may include hyperventilation, nonspecific symptoms such as fatigue and anorexia, or more severe sequelae including cardiac arrhythmias or stupor. Chronic untreated metabolic acidosis may increase the risk for nephrolithiasis or nephrocalcinosis and may also result in osteomalacia (referred to as rickets in paediatric patients) and/or osteoporosis with an increased risk for fractures. Chronic metabolic acidosis in paediatric patients can reduce growth rates. A reduction in growth rate may eventually decrease the maximal height achieved. The effect of topiramate on growth and bone related sequelae has not been systematically investigated in paediatric or adult populations.

Depending on underlying conditions, appropriate evaluation including serum bicarbonate levels is recommended with topiramate therapy. If metabolic acidosis develops and persists, consideration should be given to reducing the dose or discontinuing topiramate (using dose tapering).

**Mood Disturbances / Depression**

An increased incidence of mood disturbances and depression has been observed during topiramate treatment.

Psychiatric/behavioural disturbances (depression or mood problems) in majority of affected patients were dose related for both the add-on epilepsy and migraine populations.
Suicidal Behaviour and Ideation

Antiepileptic drugs (AEDs), including topiramate, increase the risk of suicidal thoughts or behaviour in patients taking these drugs for any indication. Patients treated with any AED for any indication should be monitored for the emergence or worsening of depression, suicidal thoughts or behaviour, and/or any unusual changes in mood or behaviour.

Pooled analyses of 199 placebo-controlled clinical trials (mono- and adjunctive therapy) of 11 different AEDs showed that patients randomised to one of the AEDs had approximately twice the risk (adjusted Relative Risk 1.8, 95% CI: 1.2, 2.7) of suicidal thinking or behaviour compared to patients randomised to placebo. In these trials, which had a median treatment duration of 12 weeks, the estimated incidence rate of suicidal behaviour or ideation among 27,863 AED-treated patients was 0.43%, compared to 0.24% among 16,029 placebo-treated patients, representing an increase of approximately one case of suicidal thinking or behaviour for every 530 patients treated. There were four suicides in drug-treated patients in the trials and none in placebo-treated patients, but the number is too small to allow any conclusion about drug effect on suicide.

The increased risk of suicidal thoughts or behaviour with AEDs was observed as early as one week after starting drug treatment with AEDs and persisted for the duration of treatment assessed. Because most trials included in the analysis did not extend beyond 24 weeks, the risk of suicidal thoughts or behaviour beyond 24 weeks could not be assessed.

The risk of suicidal thoughts or behaviour was generally consistent among drugs in the data analysed. The finding of increased risk with AEDs of varying mechanisms of action and across a range of indications suggests that the risk applies to all AEDs used for any indication. The risk did not vary substantially by age (5-100 years) in the clinical trials analysed. Table 2 shows absolute and relative risks by indication for all evaluated AEDs.

Table 2 Risk by indication for antiepileptic drugs in the pooled analysis

<table>
<thead>
<tr>
<th>Indication</th>
<th>Placebo Patients with Events Per 1000 Patients</th>
<th>Drug Patients with Events Per 1000 Patients</th>
<th>Relative Risk: Incidence of Events in Drug Patients/Incidence in Placebo Patients</th>
<th>Risk Difference: Additional Drug Patients with Events Per 1000 Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epilepsy</td>
<td>1.0</td>
<td>3.4</td>
<td>3.5</td>
<td>2.4</td>
</tr>
<tr>
<td>Psychiatric</td>
<td>5.7</td>
<td>8.5</td>
<td>1.5</td>
<td>2.9</td>
</tr>
<tr>
<td>Other</td>
<td>1.0</td>
<td>1.8</td>
<td>1.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Total</td>
<td>2.4</td>
<td>4.3</td>
<td>1.8</td>
<td>1.9</td>
</tr>
</tbody>
</table>

The relative risk for suicidal thoughts or behaviour was higher in clinical trials for epilepsy than in clinical trials for psychiatric or other conditions, but the absolute risk differences were similar for the epilepsy and psychiatric indications.

In double-blind clinical trials with topiramate in approved and investigational indications, suicide-related events (suicidal ideation, suicide attempts and suicide) occurred at a frequency of 0.5% in topiramate-treated patients (46 out of 8,652 patients treated), compared to 0.2% treated with placebo (8 out of 4,045 patients treated). One completed suicide was reported in a bipolar disorder double-blind trial in a patient on topiramate.

Anyone considering prescribing topiramate or any other AED must balance this risk with the risk of untreated illness. Epilepsy and many other illnesses for which AEDs are prescribed are themselves associated with morbidity and mortality and an increased risk of suicidal thoughts and behaviour. Should suicidal thoughts and behaviour emerge during treatment, the prescriber needs to consider whether the emergence of these symptoms in any given patient may be related to the illness being treated.

Patients, their caregivers and families should be informed that AEDs increase the risk of suicidal thoughts and behaviour and should be advised of the need to be alert for the emergence of worsening of the signs and symptoms of depression, any unusual changes in mood or behaviour, or the emergence of suicidal thoughts, behaviour or thoughts about self-harm. Behaviours of concern should be reported immediately to the treating doctor.
Suicide Attempt
In the double-blind phases of clinical trials with topiramate in approved and investigational indications, suicide attempts occurred at a rate of 0.003 (13 events / 3,999 patient years) on topiramate versus 0 (0 events / 1,430 patient years) on placebo. One completed suicide was reported in a bipolar disorder trial in a patient on topiramate.

Use in Pregnancy (Category B3)
Category B3 – Definition: Drugs which have been taken by only a limited number of pregnant women and women of childbearing age, without an increase in the frequency of malformation or other direct or indirect harmful effects on the human foetus having been observed. Studies in animals have shown evidence of an increased occurrence of foetal damage, the significance of which is considered uncertain in humans.

Topiramate was teratogenic in mice, rats and rabbits. In mice, the numbers of foetal malformations (primarily craniofacial abnormalities) were increased at all dose levels tested. The malformations in rats (limb reduction defects) and rabbits (axial and costal skeletal defects) were similar to those seen with carbonic anhydrase inhibitors in these species. Carbonic anhydrase inhibitors have not been associated with malformations in humans.

There are no studies using topiramate in pregnant women.

In post-marketing experience, cases of hypospadias have been reported in male infants exposed in utero to topiramate, with or without other anticonvulsants. A causal relationship with topiramate has not been established.

The risk of having an abnormal child as a result of antiepileptic medication is far outweighed by the danger to the mother and fetus of uncontrolled epilepsy

It is recommended that:
- women on antiepileptic drugs (AEDs) receive pregnancy counselling with regard to the risk of foetal abnormalities;
- AEDs should be continued during pregnancy and monotherapy should be used if possible at the lowest effective dose as risk of abnormality is greater in women taking combined medication;
- folic acid supplementation (5 mg) should be commenced four weeks prior to and continue for 12 weeks after conception; and
- specialist prenatal diagnosis including detailed mid-trimester ultrasound should be offered.

Use in Lactation
Radioactivity was detected in milk following oral administration of radio-labelled topiramate to lactating rats. About 1.5% of the dose was recovered in milk in 24 hours, and milk and maternal plasma radioactivity concentrations were similar. The excretion of topiramate has not been evaluated in controlled studies. Limited observation in patients suggests an extensive excretion of topiramate in breast milk. Lactating women should be advised not to breastfeed during treatment with topiramate.

Use in Children
Topiramate may be used for epilepsy in children 2 years and over (see DOSAGE AND ADMINISTRATION).

Use in the Elderly
Caution is advised during titration in the elderly with renal disease and/or hepatic impairment (see PRECAUTIONS, Patients with Renal Impairment and Patients with Hepatic Impairment).

Carcinogenicity
No evidence of carcinogenicity was seen in rats following oral administration of topiramate for two years at doses of 120 mg/kg. An increased incidence of urinary bladder tumours of a proliferative nature was observed in mice following oral administration of topiramate for 22 months at doses of 300 mg/kg. These tumours probably resulted from chronic irritation and may lack clinical significance. The plasma concentration exposure obtained in the animal studies was less than the likely clinical exposure at the maximum recommended dose.
Genotoxicity
Topiramate was not genotoxic in a series of assays for gene mutations, chromosomal damage or DNA damage.

Effect on Ability to Drive or Operate Machinery
Topiramate acts on the central nervous system and may produce drowsiness, dizziness or other related symptoms. It may also cause visual disturbances and/or blurred vision. These otherwise mild or moderate adverse events are potentially dangerous in patients driving a vehicle or operating machinery, particularly until the individual patient’s experience with the drug is established.

Interactions with Other Medicines
Studies in mice receiving concomitant administration of topiramate and carbamazepine or phenobarbitone showed synergistic anticonvulsant activity, while combination with phenytoin showed additive anticonvulsant activity.

Effects of Topiramate on Other Antiepileptic Drugs
The addition of topiramate to other antiepileptic drugs (phenytoin, carbamazepine, valproic acid, phenobarbitone, primidone) has no effect on their steady-state plasma concentrations, except in the occasional patient, where the addition of topiramate to phenytoin may result in an increase of plasma concentrations of phenytoin. This is possibly due to inhibition of a specific enzyme polymorphic isoform (CYP2C19). Consequently, any patient on phenytoin showing clinical signs or symptoms of toxicity should have phenytoin levels monitored.

Effects of Other Antiepileptic Drugs on Topiramate
The metabolic breakdown of topiramate is increased in patients receiving concomitant antiepileptic therapy with agents that are inducers of drug metabolising enzymes. The increased metabolic breakdown results in up to 1.5 times higher clearance of topiramate.

Phenytoin and carbamazepine decrease the plasma concentration of topiramate. The addition or withdrawal of phenytoin or carbamazepine to topiramate therapy may require an adjustment in dosage of the latter. This should be done by titrating to clinical effect.

The addition or withdrawal of valproic acid does not produce clinically significant changes in plasma concentrations of topiramate and, therefore, does not warrant dosage adjustment of topiramate.

No data are available on the use of topiramate with vigabatrin.

The results of these interactions are summarised in Table 3.
Table 3

Summary of Topiramate Interactions with Other Antiepileptic Drugs

<table>
<thead>
<tr>
<th>AED Co-administered</th>
<th>AED Concentration</th>
<th>Topiramate Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenytoin</td>
<td>↔ **</td>
<td>↓</td>
</tr>
<tr>
<td>Carbamazepine</td>
<td>↔</td>
<td>↓</td>
</tr>
<tr>
<td>Valproic acid</td>
<td>↔</td>
<td>↔</td>
</tr>
<tr>
<td>Phenobarbitone</td>
<td>↔</td>
<td>N</td>
</tr>
<tr>
<td>Primidone</td>
<td>↔</td>
<td>N</td>
</tr>
<tr>
<td>Lamotrigine</td>
<td>↔</td>
<td>↔</td>
</tr>
</tbody>
</table>

↔ = No effect on plasma concentration
** = Plasma concentrations increase in occasional patients
↓ = Plasma concentrations decrease
N = Not studied
AED = Antiepileptic drug

Other Drug Interactions

Digoxin
In a single dose study, serum digoxin area under plasma concentration curve (AUC) decreased 12% due to concomitant administration of topiramate. The clinical relevance of this observation has not been established. When topiramate is added or withdrawn in patients on digoxin therapy, careful attention should be given to the routine monitoring of serum digoxin.

Central Nervous System Depressants
Concomitant administration of topiramate and alcohol or other CNS depressant drugs has not been evaluated in clinical studies. It is recommended that topiramate not be used concomitantly with alcohol or other CNS depressant drugs.

Oral Contraceptives
In a pharmacokinetic interaction study in healthy volunteers with a concomitantly administered combination oral contraceptive product containing 1 mg norethisterone (NET) plus 35 µg ethinyloestradiol (EO), topiramate given in the absence of other medications at doses of 50 to 200 mg/day was not associated with statistically significant changes in mean exposure (AUC) to either component of the oral contraceptive. In another study, exposure to EO was statistically significantly decreased at doses of 200, 400 and 800 mg/day (18%, 21% and 30%, respectively) when given as adjunctive therapy in patients taking valproic acid. In both studies, topiramate (50 to 800 mg/day) did not significantly affect exposure to NET. Although there was a dose dependent decrease in EO exposure for doses between 200– 800 mg/day, there was no significant dose dependent change in EO exposure for doses of 50–200 mg/day.

The clinical significance of the changes observed is not known. The possibility of decreased contraceptive efficacy and increased breakthrough bleeding should be considered in patients taking combination oral contraceptive products with topiramate. Patients taking oestrogen containing contraceptives should be asked to report any change in their bleeding patterns. Contraceptive efficacy can be decreased even in the absence of breakthrough bleeding.
Lithium
In healthy volunteers, there was an observed reduction (18% for AUC) in systemic exposure for lithium during concomitant administration with topiramate 200 mg/day. In patients with bipolar disorder, the pharmacokinetics of lithium were unaffected during treatment with topiramate at doses of 200 mg/day; however, there was an observed increase in systemic exposure (26% for AUC) following topiramate doses of up to 600 mg/day. Lithium levels should be monitored when co-administered with topiramate.

Risperidone
Drug-drug interaction studies conducted under single and multiple dose conditions in healthy volunteers and patients with bipolar disorder yielded similar results. When administered concomitantly with topiramate at escalating doses of 100, 250 and 400 mg/day there was a reduction in risperidone (administered at doses ranging from 1 to 6 mg/day) systemic exposure (16 and 33% for steady-state AUC at the 250 and 400 mg/day doses, respectively). Minimal alterations in the pharmacokinetics of the total active moiety (risperidone plus 9-hydroxyrisperidone) and no alterations for 9-hydroxyrisperidone were observed. The clinical relevance of the observed, apparently not statistically significant, changes in the systemic exposure of the total active moiety (risperidone plus 9-hydroxyrisperidone) or of topiramate is not known.

Hydrochlorothiazide (HCTZ)
A drug/drug interaction study conducted in healthy volunteers evaluated the steady-state pharmacokinetics of HCTZ (25 mg every 24 hours) and topiramate (96 mg every 12 hours) when administered alone and concomitantly. The results of this study indicated that topiramate Cmax increased by 27% and AUC increased by 29% when HCTZ was added to topiramate. The clinical significance of this change is unknown. The addition of HCTZ to topiramate therapy may require an adjustment of the topiramate dose. Clinical laboratory results indicated decreases in serum potassium after topiramate or HCTZ administration, which were greater when HCTZ and topiramate were administered in combination.

Metformin
A drug-drug interaction study conducted in healthy volunteers evaluated the steady state pharmacokinetics of metformin and topiramate in plasma when metformin was given alone and when metformin and topiramate were given simultaneously. The results of this study indicated that metformin mean Cmax and mean AUC0-12h increased by 18% and 25%, respectively, while mean CL/F decreased 20% when metformin was co-administered with topiramate. Topiramate did not affect metformin Tmax. The clinical significance of the effect of topiramate on metformin pharmacokinetics is unclear. Oral plasma clearance of topiramate appears to be reduced when administered with metformin. The extent of change in the clearance is unknown. The clinical significance of the effect of metformin on topiramate pharmacokinetics is unclear. When topiramate is added or withdrawn in patients on metformin therapy, careful attention should be given to the routine monitoring for adequate control of their diabetic disease state.

Pioglitazone
A drug-drug interaction study conducted in healthy volunteers evaluated the steady-state pharmacokinetics of topiramate and pioglitazone when administered alone and concomitantly. A 15% decrease in the AUCt,ss of pioglitazone with no alteration in Cmax,ss was observed. This finding was not statistically significant. In addition a 13% and 16% decrease in Cmax,ss and AUCt,ss respectively of the active hydroxymetabolite was noted, as well as a 60% decrease in Cmax,ss and AUCt,ss of the active ketometabolite. The clinical significance of these findings is not known. When topiramate is added to pioglitazone therapy or pioglitazone is added to topiramate therapy, careful attention should be given to the routine monitoring of patients for adequate control of their diabetic disease state.

Glibenclamide
A drug-drug interaction study conducted in patients with type 2 diabetes evaluated the steady-state pharmacokinetics of glibenclamide (5 mg/day) alone and concomitantly with topiramate (150 mg/day). There was a 25% reduction in glibenclamide AUC24h during topiramate administration. Systemic exposure of the active metabolites, 4-trans-hydroxylglibenclamide and 3-cis-hydroxylglibenclamide, were also reduced by 13 and 15%, respectively. The steady-state pharmacokinetics of topiramate were unaffected by concomitant administration of glibenclamide. When topiramate is added to glibenclamide therapy or glibenclamide is added to topiramate therapy, careful attention should be given to the routine monitoring of patients for adequate control of their diabetic disease state.
Other Forms of Interaction

Agents Pre-Disposing to Nephrolithiasis

Topiramate, when used concomitantly with other agents predisposing to nephrolithiasis, may increase the risk of nephrolithiasis. While using topiramate, agents like these should be avoided since they may create a physiological environment that increases the risk of renal stone formation.

Valproic Acid

Concomitant administration of topiramate and valproic acid has been associated with hyperammonaemia with or without encephalopathy in patients who have tolerated either drug alone. In most cases, symptoms and signs abated with discontinuation of either drug. This adverse event is not due to a pharmacokinetic interaction. An association of hyperammonaemia with either topiramate or valproic acid monotherapy has not been established.

Additional Pharmacokinetic Drug Interaction Studies

Clinical studies have been conducted to assess the potential pharmacokinetic drug interaction between topiramate and other agents. The changes in $C_{\text{max}}$ or AUC as a result of the interactions are summarised below in Table 4. The second column (concomitant drug concentration) describes what happens to the concentration of the concomitant drug listed in the first column when topiramate is added. The third column (topiramate concentration) describes how the co-administration of a drug listed in the first column modifies the concentration of topiramate.
Table 4
Summary of Results from Additional Clinical Pharmacokinetic Drug Interaction Studies

<table>
<thead>
<tr>
<th>CONCOMITANT DRUG</th>
<th>CONCOMITANT DRUG CONCENTRATION</th>
<th>TOPIRAMATE CONCENTRATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amitriptyline</td>
<td>↔</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>20% increase in C&lt;sub&gt;max&lt;/sub&gt; and AUC of nortriptyline metabolite</td>
<td></td>
</tr>
<tr>
<td>Dihydroergotamine (oral &amp; subcutaneous)</td>
<td>↔</td>
<td>↔</td>
</tr>
<tr>
<td>Haloperidol</td>
<td>↔</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>31% increase in AUC of the reduced metabolite</td>
<td></td>
</tr>
<tr>
<td>Propranolol</td>
<td>↔</td>
<td>16% increase in C&lt;sub&gt;max&lt;/sub&gt;</td>
</tr>
<tr>
<td></td>
<td>17% increase in C&lt;sub&gt;max&lt;/sub&gt; for 4-OH propanolol (topiramate 50 mg every 12 hrs)</td>
<td>17% increase in AUC (propanolol 80 mg every 12 hrs)</td>
</tr>
<tr>
<td>Sumatriptan (oral &amp; subcutaneous)</td>
<td>↔</td>
<td>NS</td>
</tr>
<tr>
<td>Pizotifen</td>
<td>↔</td>
<td>↔</td>
</tr>
<tr>
<td>Diltiazem</td>
<td>25% decrease in AUC of diltiazem, 18% decrease in DEA and ↔ for DEM</td>
<td>20% increase in AUC</td>
</tr>
<tr>
<td>Venlafaxine</td>
<td>↔</td>
<td>↔</td>
</tr>
<tr>
<td>Flunarizine</td>
<td>16% increase in AUC (topiramate 50 mg every 12 hrs) *</td>
<td>↔</td>
</tr>
</tbody>
</table>

↔ No effect on C<sub>max</sub> and AUC (≤ 15% change) of the parent compound
NS Not studied
DEA Desacetyl diltiazem
DEM N-demethyl diltiazem
* Flunarizine AUC increased 14% in subjects taking flunarizine alone. Increase in exposure may be attributed to accumulate during achievement of steady state.

Effect on Laboratory Tests
Clinical trial data indicate that topiramate has been associated with an average decrease of 4 mmol/L in serum bicarbonate level (see PRECAUTIONS).

In double-blind trials, hypokalemia (defined as serum potassium decline below 3.5 mmol/L) has been observed in 0.4% of subjects treated with topiramate, compared to 0.1% of subjects treated with placebo.

ADVERSE EFFECTS
The majority of the most common adverse effects in clinical trials were mild-moderate in severity and dose-related. These dose related adverse effects typically began in the titration phase and often persisted into the maintenance phase but infrequently began in the maintenance phase. Rapid titration rate and higher initial dose were associated with higher incidences of adverse effects leading to discontinuation.
Monotherapy

Epilepsy

The types of adverse events observed in monotherapy trials were generally similar to those observed during add-on therapy trials. With the exception of paraesthesia and fatigue, the incidence rates of the adverse events were similar or lower in the monotherapy trials when compared to the add-on therapy trials.

In double-blind clinical trials, the following adverse events occurred at an incidence greater than or equal to 10% in topiramate treated patients.

**Adults**
Paraesthesia, headache, fatigue, dizziness, somnolence, weight decrease, nausea and anorexia.

**Children**
Headache, fatigue, anorexia and somnolence.

Add-On Therapy

Epilepsy

Tables 5 and 6 list adverse events reported during the add-on clinical trials. Since topiramate has most frequently been co-administered with other antiepileptic drugs, it is not possible to determine which of these are associated with adverse events.

### Table 5
Adverse Events for Add-On Trials in Adults

<table>
<thead>
<tr>
<th>BODY SYSTEM</th>
<th>VERY COMMON (&gt; 10%)</th>
<th>COMMON (1%–10%)</th>
<th>UNCOMMON (0.1%–1%)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Psychiatric</strong></td>
<td>Anorexia, confusion, difficulty with memory, nervousness, psychomotor slowing, somnolence</td>
<td>Aggressive reaction, agitation, apathy, cognitive problems, depression, difficulty with concentration or attention, emotional lability, mood problems, psychosis or psychotic symptoms</td>
<td>Suicidal ideation or attempts</td>
</tr>
<tr>
<td><strong>Nervous system</strong></td>
<td>Ataxia, dizziness, paraesthesia, speech disorder or related speech problems</td>
<td>Abnormal gait, coordination problems, language problems, nystagmus, tremor</td>
<td></td>
</tr>
<tr>
<td><strong>Body as a whole</strong></td>
<td>Fatigue</td>
<td></td>
<td>Asthenia</td>
</tr>
<tr>
<td><strong>Gastrointestinal</strong></td>
<td>Diarrhoea</td>
<td></td>
<td>Abdominal pain, nausea</td>
</tr>
<tr>
<td><strong>Metabolic &amp; nutritional</strong></td>
<td>Weight decrease</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td><strong>Special senses</strong></td>
<td>-</td>
<td>Abnormal vision, diplopia, taste perversion</td>
<td></td>
</tr>
<tr>
<td><strong>Haematological</strong></td>
<td>-</td>
<td>Leucopenia</td>
<td></td>
</tr>
<tr>
<td><strong>Urinary</strong></td>
<td>-</td>
<td>Renal calculus</td>
<td></td>
</tr>
</tbody>
</table>

1. The frequency for some of these adverse events was lower at the usual dosage of 200 to 400 mg/day
2. Leg pain and isolated cases of thromboembolic events have been reported, although a causal association with topiramate has not been established
3. A dietary supplement or increased food intake may be considered if the patient is losing weight while on topiramate
### Table 6
Adverse Events for Add-On Trials in Children

<table>
<thead>
<tr>
<th>BODY SYSTEM</th>
<th>VERY COMMON (&gt; 10%)</th>
<th>COMMON (1%–10%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychiatric¹</td>
<td>Anorexia, nervousness, personality disorder, somnolence</td>
<td>Aggressive reaction, confusion, difficulty with concentration or attention, difficulty with memory, emotional lability, mood problems, psychomotor slowing</td>
</tr>
<tr>
<td>Nervous system</td>
<td>-</td>
<td>Abnormal gait, ataxia, hyperkinesia, dizziness, paraesthesia, speech disorder or related speech problems</td>
</tr>
<tr>
<td>Body as a whole</td>
<td>Fatigue</td>
<td>-</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>-</td>
<td>Increased saliva, nausea</td>
</tr>
<tr>
<td>Metabolic &amp; nutritional</td>
<td>-</td>
<td>Weight decrease²</td>
</tr>
<tr>
<td>Haematological</td>
<td>-</td>
<td>Leucopenia</td>
</tr>
</tbody>
</table>

1. Psychiatric adverse events, such as agitation, apathy, cognitive problems, hallucination and depression have also been reported as uncommon events (< 1%)

2. A dietary supplement or increased food intake may be considered if the patient is losing weight while on topiramate

### Migraine

In double-blind clinical trials, clinically relevant adverse events which occurred at a frequency of 5% or more and seen at a higher incidence in topiramate treated patients than placebo treated patients included: fatigue, paraesthesia, dizziness, hyphaesthesia, speech problems, nausea, diarrhoea, dyspepsia, dry mouth, weight decrease, anorexia, somnolence, difficulty with memory, difficulty with concentration/attention, insomnia, anxiety, mood problems, depression, taste perversion, abnormal vision.

Patients treated with topiramate experienced mean percent changes in body weight that were dose dependent. This change was not seen in the placebo group. Mean changes of 0.0%, -2.3%, -3.2% and -3.8% were seen for the placebo group, topiramate 50, 100 and 200 mg/day groups, respectively.

### Post-Marketing and Other Experience

In addition to the adverse experiences reported during clinical trials of topiramate, the following adverse experiences have been reported worldwide in patients receiving topiramate post-approval. Adverse drug reactions from spontaneous reports during the worldwide post-marketing experience with topiramate are included below. The adverse drug reactions are ranked by frequency, using the following convention (all calculated per patient-years of estimated exposure):

- Very common (≥ 1/10)
- Common (≥ 1/100 and < 1/10)
- Uncommon (≥1/100 and < 1/100)
- Rare (≥1/1000 and <1/1000)
- Very rare (<1/10000).

The frequencies provided below reflect reporting rates for adverse drug reactions from spontaneous reports and do not represent more precise estimates that might be obtained in clinical or experimental studies.
Blood and Lymphatic System Disorders
Very Rare: Leucopenia and neutropenia, thrombocytopenia.

Metabolic & Nutritional Disorders
Rare: Anorexia.
Very rare: Metabolic acidosis (see PRECAUTIONS), decreased appetite, hyperammonaemia (see PRECAUTIONS, Other Forms of Interactions).

Psychiatric Disorders
Rare: Depression, agitation, somnolence (see PRECAUTIONS).
Very rare: Insomnia, confusional state, psychotic disorder, aggression, hallucination, suicidal ideation, attempts and suicide, expressive language disorder (see PRECAUTIONS).

Nervous System Disorders
Rare: Paraesthesia (see PRECAUTIONS), convulsion, headache.
Very rare: Speech disorder, dysgeusia, amnesia memory impairment, drug withdrawal convulsions (see PRECAUTIONS).

Eye Disorders
Rare: Visual disturbance, vision blurred.
Very rare: Myopia and angle closure glaucoma (see PRECAUTIONS), eye pain, blindness transient.

Gastrointestinal Disorders
Rare: Nausea.
Very rare: Diarrhoea, abdominal pain, vomiting, acute pancreatitis.

Skin and Subcutaneous Tissue Disorders
Rare: Alopecia.
Very rare: Rash.

Renal and Urinary Disorders
Rare: Nephrolithiasis (see PRECAUTIONS).
Very rare: Renal tubular acidosis.

General Disorders and Administration Site Conditions
Rare: Fatigue, oligohydrosis (see PRECAUTIONS) – the majority of these reports have been in children.
Very rare: Pyrexia, feeling abnormal, asthenia.

Investigations
Rare: Weight decreased.

Reports of increases in liver function tests in patients taking topiramate with and without order medications have been received. Isolated reports have been received of hepatitis and hepatic failure occurring in patients taking multiple medications while being treated with topiramate.

Isolated reports have also been received regarding bullous skin and mucosal reactions (including erythema multiforme, pemphigus, pemphigoid, Stevens-Johnson syndrome and toxic epidermal necrolysis). The majority of these reports have occurred in patients taking other medications associated with bullous skin and mucosal effects.
DOSAGE AND ADMINISTRATION

Topiramate tablets should be swallowed whole.

Topiramate can be taken without regard to meals.

For optimum seizure control in both adults and children, it is recommended that therapy should be initiated at a low dose followed by slow titration to an effective dose. Dose titration should be guided by clinical outcome.

The recommended dosages of topiramate in adults and children for epilepsy are summarised in Table 7.

Monotherapy – Epilepsy

In newly diagnosed epileptic patients, topiramate monotherapy should be initiated at a low dose (see Table 7).

In patients who are being converted to topiramate monotherapy, consideration should be given to the effects of seizure control when withdrawing concomitant antiepileptic drugs (AEDs). Unless safety concerns require an abrupt withdrawal of the concomitant AED, a gradual discontinuation at the rate of approximately one-third of the concomitant AED dose every two weeks is recommended. When enzyme-inducing drugs are withdrawn, topiramate levels will increase. A decrease in topiramate dosage may be required if clinically indicated.

Adults

Titration for monotherapy should begin at 25 mg as a single (nightly) dose for one week or longer. The dosage should then be increased by 25 to 50 mg/day at weekly or longer intervals to the recommended target dose of 100 mg/day. If the patient is unable to tolerate the titration regimen, smaller increments or longer intervals between increments can be used. The maximum recommended dose is 500 mg/day. Some patients with refractory forms of epilepsy have tolerated doses of 1,000 mg/day. The daily dosage should be taken as two divided doses.

Children (2 years and over)

Titration for monotherapy should begin at 0.5 to 1 mg/kg as a single (nightly) dose for the first week. The dosage should then be increased by 0.5 to 1 mg/kg/day at weekly or longer intervals to the recommended target dose of 3 to 6 mg/kg/day. If the child is unable to tolerate the titration regimen, smaller increments or longer intervals between dose increments can be used. Some children with recently diagnosed partial onset seizures have received doses of up to 500 mg/day. The daily dosage should be given as two divided doses.

Add-On Therapy – Epilepsy

Adults

Titration for add-on therapy should begin at 25 to 50 mg as a single (nightly) or divided dose for one week or longer. The dosage should then be increased by 25 to 100 mg/day at weekly or longer intervals to the target dose of 200 to 400 mg/day. The maximum recommended dose should not exceed 1,000 mg/day. The daily dosage should be taken as two divided doses.

Children (2 Years and Over)

Titration for add-on therapy should begin at 1 to 3 mg/kg/day up to 25 mg/day as a single (nightly) dose for the first week. The dosage should then be increased by 1 to 3 mg/kg/day at weekly or longer intervals to the recommended total daily dose of 5 to 9 mg/kg/day. Daily doses up to 30 mg/kg have been studied and were generally well tolerated. The daily dosage should be given as two divided doses.
## Table 7
Recommended Dosages in Adults and Children

<table>
<thead>
<tr>
<th></th>
<th><strong>MONOTHERAPY</strong></th>
<th><strong>ADD-ON THERAPY</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Starting dose</strong></td>
<td>25 mg as a single (nightly) dose for one week (or longer)</td>
<td>25 to 50 mg as a single (nightly) or divided dose for one week (or longer)</td>
</tr>
<tr>
<td><strong>Escalation dose</strong></td>
<td>Increase by 25 to 50 mg/day at weekly or longer intervals</td>
<td>Increase by 25 to 100 mg/day at weekly or longer intervals</td>
</tr>
<tr>
<td><strong>Target dose</strong></td>
<td>100 mg/day</td>
<td>200 to 400 mg/day</td>
</tr>
<tr>
<td><strong>Maximum dose</strong></td>
<td>Up to 500 mg/day</td>
<td>Up to 1,000 mg/day</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th><strong>MONOTHERAPY</strong></th>
<th><strong>ADD-ON THERAPY</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Starting dose</strong></td>
<td>0.5 to 1 mg/kg as a single (nightly) dose for the first week</td>
<td>1 to 3 mg/kg a day up to 25 mg/day as a single (nightly) dose for the first week</td>
</tr>
<tr>
<td><strong>Escalation dose</strong></td>
<td>Increase by 0.5 to 1 mg/kg/day at weekly or longer intervals</td>
<td>Increase by 1 to 3 mg/kg/day at weekly or longer intervals</td>
</tr>
<tr>
<td><strong>Target dose</strong></td>
<td>3 to 6 mg/kg/day</td>
<td>5 to 9 mg/kg/day</td>
</tr>
<tr>
<td><strong>Maximum dose</strong></td>
<td>Up to 500 mg/day</td>
<td>Up to 30 mg/kg/day</td>
</tr>
</tbody>
</table>

**Note:** Daily doses greater or equal to 50 mg should be taken as two divided doses

1 Some patients with refractory epilepsy have tolerated doses of 1,000 mg/day

It is not necessary to monitor topiramate plasma concentrations to optimise topiramate therapy. For patients receiving concomitant phenytoin and carbamazepine, dosage adjustment for topiramate may be required (see PRECAUTIONS, Interactions with Other Medicines).

**Migraine**

**Adults**

Titration should begin at 25 mg nightly for one week. The dosage should then be increased weekly in increments of 25 mg/day. If the patient is unable to tolerate the titration regimen, longer intervals between dose adjustments can be used.

The recommended total daily dose of topiramate as treatment for prophylaxis of migraine headache is 100 mg/day administered in two divided doses. Some patients may experience a benefit at a total daily dose of 50 mg/day. Patients have received a total daily dose up to 200 mg/day. Dose and titration should be guided by clinical outcome.

**Use in the Elderly**

Caution is advised during titration in the elderly with renal disease and/or hepatic impairment (see PRECAUTIONS, Patients with Renal Impairment and Patients with Hepatic Impairment).

**Use in Patients with Renal and/or Hepatic Impairment**

Caution is advised during titration in patients with renal disease and/or hepatic impairment (see PRECAUTIONS, Patients with Renal Impairment and Patients with Hepatic Impairment).
Use in Patients Undergoing Haemodialysis
Topiramate is cleared by haemodialysis. To avoid rapid reduction in topiramate plasma concentration during haemodialysis, a supplemental dose of topiramate should be added to the patient's normal daily dose as follows:

Patients on Concomitant Enzyme Inducers (Phenytoin, Carbamazepine, Phenobarbitone and Other Barbiturates)
A supplemental dose equal to one-third the patient's normal daily dose should be given on the day of haemodialysis. The supplemental dose should be divided so as to allow for administration of one-quarter of the supplemental dose at the start of haemodialysis. The remaining three-quarters of the supplemental dose should be administered at the completion of the haemodialysis.

Patients not on Concomitant Enzyme Inducers
A supplemental dose equal to 1.6 times the patient's normal daily dose should be given on the day of haemodialysis. The supplemental dose should be divided so as to allow for administration of one-third of the supplemental dose at the start of haemodialysis. The remaining two-thirds of the supplemental dose should be administered at the completion of the haemodialysis.

Drug Withdrawal and Dosage Reduction
In patients with or without history of seizures or epilepsy, antiepileptic drugs, including topiramate should be gradually withdrawn to minimise the potential for seizures or of increased seizure frequency. In situations where rapid withdrawal of topiramate is medically required, appropriate monitoring is recommended.

OVERDOSAGE
Symptoms
Ingestion of between 6 g and 40 g topiramate has been reported in a few patients. Signs and symptoms included headache, agitation, drowsiness, lethargy, convulsions, speech disturbances, blurred vision, diplopia, mentation impaired, abnormal coordination, stupor, hypotension, abdominal pain, dizziness, depression and hypokalemia. The clinical consequences were not severe in most cases, but deaths have been reported after polydrug overdoses involving topiramate.

Topiramate overdose can result in severe metabolic acidosis (see PRECAUTIONS, Metabolic Acidosis).

A patient who ingested a dose calculated to be between 96 g and 110 g topiramate was admitted to hospital with coma lasting 20–24 hours followed by full recovery after three to four days.

Treatment
General supportive measures are indicated and an attempt should be made to remove undigested topiramate from the gastrointestinal tract using activated charcoal.

Treatment should be appropriately supportive. Haemodialysis has been shown to be an effective means of removing topiramate from the body. The patient should be well hydrated.

Contact the Poisons Information Centre on 13 11 26 (Australia) for advice on the management of overdose.
PRESENTATION AND STORAGE CONDITIONS

Each APO-Topiramate tablet intended for oral administration contains 25 mg, 50 mg, 100 mg or 200 mg of topiramate.

In addition, each tablet contains the following inactive ingredients: methylcellulose, croscarmellose sodium, magnesium stearate, silica-colloidal anhydrous, hypromellose, hydroxypropylcellulose, macrogol, titanium dioxide, iron oxide yellow (CI77492) (50 mg & 100 mg only), iron oxide red (CI77491) (200 mg only).

25 mg tablets:
White to off-white, round, unscored, film coated tablet, imprinted “APO” on one side and “TP over “25” on the other side.

Blister: AUST R 124729 - blister pack of 60 tablets
Bottle: AUST R 124733 - bottle of 60 tablets (not marketed)

50 mg tablets:
Light-yellow, round, unscored, film coated tablet, imprinted “APO” on one side and “TP over “50” on the other side.

Blister: AUST R 124730 - blister pack of 60 tablets
Bottle: AUST R 124734 - bottle of 60 tablets (not marketed)

100 mg tablets:
Mustard yellow, round, unscored, film coated tablet, imprinted “APO” on one side and “TP over “100” on the other side.

Blister: AUST R 124731 - blister pack of 60 tablets
Bottle: AUST R 124735 - bottle of 60 tablets (not marketed)

200 mg tablets:
Reddish-brown, round, unscored, film coated tablet, imprinted “APO” on one side and “TP over “200” on the other side.

Blister: AUST R 124732 - blister pack of 60 tablets
Bottle: AUST R 124736 - bottle of 60 tablets (not marketed)

Storage
Store below 25°C, store in original package.

NAME AND ADDRESS OF THE SPONSOR

Apotex Pty Ltd
ABN 52 096 916 418
66 Waterloo Road
North Ryde NSW 2113
Australia

Apotex Pty Ltd is the licensee of the registered trade marks AX logo, APO and APOTEX from the registered proprietor, Apotex Inc.

POISON SCHEDULE OF THE MEDICINE

Schedule 4 – Prescription Only Medicine.

Date of TGA approval: 25 June 2007

Date of most recent amendment: 23 February 2009