FOSAMAX tablets contain alendronate sodium.

FOSAMAX PLUS tablets contain alendronate sodium and colecalciferol (vitamin D₃).

FOSAMAX PLUS D-Cal is a combination pack containing FOSAMAX PLUS (alendronate sodium and colecalciferol [vitamin D₃]) in addition to BoneCal® tablets (calcium carbonate).

Alendronate sodium is described chemically as: (4-amino-1-hydroxybutylidene) bisphosphonic acid monosodium salt trihydrate.

The empirical formula is C₄H₁₂NNaO₇P₂•3H₂O. The formula weight is 325.12. The CAS Registry Number is 121268-17-5. The structural formula is:

![Structural formula of alendronate sodium](image)

Colecalciferol

The chemical name of colecalciferol is (3β,5Z,7E)-9,10-secocholesta-5,7,10(19)-trien-3-ol. The empirical formula of colecalciferol is C₂₇H₄₄O and its molecular weight is 384.6. The CAS Registry Number is 67-97-0. The structural formula is:

![Structural formula of colecalciferol](image)

© Registered Trademark of Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Whitehouse Station, NJ, USA.
TM Trademark of Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Whitehouse Station, NJ, USA.
Calcium Carbonate

Calcium carbonate is described chemically as carbonic acid calcium salt (1:1). The empirical formula of calcium carbonate is CaCO₃ and its molecular weight is 100.09. The CAS Registry Number is 471-34-1.

**DESCRIPTION**

Alendronate sodium, MSD is a bisphosphonate that acts as a potent, specific inhibitor of osteoclast-mediated bone resorption. Bisphosphonates are synthetic analogs of pyrophosphate that bind to the hydroxyapatite found in bone.

Alendronate is a white, crystalline, nonhygroscopic powder. It is soluble in water, very slightly soluble in alcohol, and practically insoluble in chloroform.

Colecalciferol (vitamin D₃) is a secosterol that is the natural precursor of the calcium-regulating hormone calcitriol (1,25-dihydroxyvitamin D₃).

Colecalciferol is a white, crystalline, odourless powder. Colecalciferol is practically insoluble in water, freely soluble in usual organic solvents, and slightly soluble in vegetable oils.

Each tablet of FOSAMAX contains either 6.53, 13.05, 52.21 or 91.4 mg of alendronate sodium, which is the molar equivalent to 5.0, 10.0, 40.0 and 70 mg respectively of alendronic acid. In addition to the active ingredient alendronate sodium, each FOSAMAX tablet contains the following inactive ingredients: cellulose-microcrystalline, lactose anhydrous, croscarmellose sodium and magnesium stearate. FOSAMAX 10 mg tablets also contain carnauba wax.

Each tablet of FOSAMAX PLUS (70 mg/70 μg) contains 91.4 mg of alendronate sodium, which is the molar equivalent to 70 mg of alendronic acid, and 70 μg of colecalciferol equivalent to 2800 IU vitamin D. Each tablet of FOSAMAX PLUS 70 mg/140 μg) contains 91.4 mg of alendronate sodium, which is the molar equivalent to 70 mg of alendronic acid, and 140 μg of colecalciferol equivalent to 5600 IU vitamin D. In addition to the active ingredients alendronate sodium and colecalciferol, each FOSAMAX PLUS tablet (70 mg/70 μg and 70 mg/140 μg) contains the following inactive ingredients: cellulose-microcrystalline, lactose anhydrous, medium chain triglycerides, gelatin, croscarmellose sodium, sucrose, silica-colloidal anhydrous, magnesium stearate, butylated hydroxytoluene, modified food starch and aluminium sodium silicate.

Each tablet of BoneCal contains 1250mg calcium carbonate which is equivalent to 500 mg elemental calcium. In addition, each BoneCal tablet contains the following inactive ingredients: cellulose-microcrystalline, maltodextrin, acacia, crospovidone, hypromellose, titanium dioxide, magnesium stearate, macrogol 400, carnauba wax, iron oxide yellow CI77492 and chlorophyllin copper complex.

**PHARMACOLOGY**

**PHARMACOKINETIC PROPERTIES**

**Absorption**

Alendronate sodium

Relative to an intravenous (IV) reference dose, the mean oral bioavailability of alendronate in women was 0.64% for doses ranging from 5 to 70 mg when administered after an overnight fast and two hours before
a standardised breakfast. There was substantial variability both within and between patients, coefficient of variation 63% and 77%, respectively. Oral bioavailability in men (0.6%) was similar to that in women.

In two two-period cross-over studies, the alendronate in the FOSAMAX PLUS (70 mg/70 μg and 70 mg/140 μg) tablet was shown to be bioequivalent to the alendronate in the FOSAMAX 70 mg tablet.

Bioavailability was decreased similarly (by approximately 40%) whether alendronate was administered one or one-half hour before a standardised breakfast. In osteoporosis and Paget's disease studies, FOSAMAX was effective when administered at least 30 minutes before the first food or beverage of the day.

Bioavailability was negligible whether alendronate was administered with or up to two hours after a standardised breakfast. Concomitant administration of alendronate with coffee or orange juice reduced bioavailability by approximately 60%.

In normal subjects, oral prednisone (20 mg three times daily for five days) did not substantially alter the oral bioavailability of alendronate (alendronate alone, 0.73%; alendronate plus prednisone, 0.87%).

Colecalciferol
Following administration of FOSAMAX PLUS (70 mg/70 μg) Once Weekly Tablet after an overnight fast and two hours before a standard meal, the baseline unadjusted mean area under the serum-concentration-time curve (AUC0-120 hrs) for vitamin D3 was 296.4 ng-hr/mL (Geometric Mean Ratio [GMR] FOSAMAX PLUS 70 mg/70 μg /vitamin D3 only: 0.88; 90% CI: 0.81, 0.95). The baseline unadjusted mean maximal serum concentration (Cmax) of vitamin D3 was 5.9 ng/mL, [GMR (FOSAMAX PLUS 70 mg/70 μg /vitamin D3 only): 0.89; 90% CI: 0.84, 0.95] and the median time to maximal serum concentration (Tmax) was 12 hrs. The bioavailability of the 70 μg (2800 IU) vitamin D3 in FOSAMAX PLUS (70 mg/70 μg) is similar to 70 μg (2800 IU) vitamin D3 administered alone (using the AUC0-120 hr and Cmax GMR values).

Following administration of FOSAMAX PLUS 70 mg/140 μg after an overnight fast and two hours before a standard meal, the mean area under the serum-concentration-time curve (AUC0-80 hrs) (unadjusted for endogenous vitamin D3 levels) for vitamin D3 was 490.2 ng-hr/mL (Geometric Mean Ratio [GMR] FOSAMAX PLUS 70 mg/140 μg /vitamin D3 only: 0.94; 90% CI 0.89, 1.00). The baseline unadjusted mean maximal serum concentration (Cmax) of vitamin D3 was 12.2 ng/mL, [GMR (FOSAMAX PLUS 70 mg/140 μg /vitamin D3 only 0.94; 90% CI: 0.88, 1.00] and the median time to maximal serum concentration (Tmax) was 10.6 hrs. The bioavailability of the 140 μg (5600 IU) vitamin D3 in FOSAMAX PLUS 70 mg/140 μg is similar to 140 μg (5600 IU) vitamin D3 administered alone (using the AUC0-80 hr and Cmax GMR values).

Calcium Carbonate
Following ingestion of BoneCal, approximately 15 to 40% of ingested calcium is absorbed from the small intestine into the circulation. The amount absorbed is under physiological regulation based on the body's needs.

Distribution
Alendronate sodium
Preclinical studies show that alendronate transiently distributes to soft tissues following administration but is then rapidly redistributed to bone or excreted in the urine. The mean steady state volume of distribution, exclusive of bone, is at least 28 L in humans. Concentrations of alendronate in plasma
following therapeutic oral doses are generally below the limits of quantification (less than 5 ng/mL). Protein binding in human plasma is approximately 78%.

Colecalciferol
Following absorption, vitamin D₃ enters the blood as part of chylomicrons. Vitamin D₃ is rapidly distributed mostly to the liver where it undergoes metabolism to 25-hydroxyvitamin D₃, the major storage form. Lesser amounts are distributed to adipose and muscle tissue and stored as vitamin D₃ at these sites for later release into the circulation. Circulating vitamin D₃ is bound to vitamin D-binding protein.

Calcium
Calcium is present throughout the body. Approximately 99% of calcium in the body is concentrated in bones and teeth. The remaining 1% is present in the intra- and extra-cellular fluids. About 50% of the total plasma calcium content is the physiologically active ionized form, 10% is complexed with citrate, phosphate or other anions, and the remaining 40% is bound to proteins, principally albumin.

Metabolism
Alendronate sodium
There is no evidence that alendronate is metabolised in animals or humans.

Colecalciferol
Vitamin D₃ is rapidly metabolised by hydroxylation in the liver to 25-hydroxyvitamin D₃, and subsequently metabolised in the kidney to 1,25-dihydroxyvitamin D₃, which represents the biologically active form. Further hydroxylation occurs prior to elimination. A small percentage of vitamin D₃ undergoes glucuronidation prior to elimination.

Elimination
Alendronate sodium
Following a single 10 mg IV dose of [¹⁴C] alendronate, approximately 50% of the radioactivity was excreted in the urine within 72 hours and little or no radioactivity was recovered in the faeces; the renal clearance of alendronate was 71 mL/min. Plasma concentrations fell by more than 95% within 6 hours following IV administration, due to distribution to the bone and excretion in the urine. The terminal half-life in humans is estimated to exceed 10 years, reflecting release of alendronate from the skeleton. Alendronate is not excreted through the acidic or basic transport systems of the kidney in rats, and thus it is not anticipated to interfere with the excretion of other drugs by those systems in humans.

Preclinical studies show that the alendronate that is not deposited in bone is rapidly excreted in the urine. No evidence of saturation of bone uptake was found over three weeks in rats, with a cumulative IV dose of 35 mg/kg. Although no clinical information is available, it is likely that, as in animals, elimination of alendronate via the kidney will be reduced in patients with impaired renal function. Therefore, somewhat greater accumulation of alendronate in bone might be expected in patients with impaired renal function (see DOSAGE AND ADMINISTRATION).

Colecalciferol
When radioactive vitamin D₃ was administered to healthy subjects, the mean urinary excretion of radioactivity after 48 hours was 2.4%, and the mean faecal excretion of radioactivity after 4 days was 4.9%. In both cases, the excreted radioactivity was almost exclusively as metabolites of the parent. The mean half-life of vitamin D₃ in the serum following an oral dose of alendronate 70 mg/coleccalciferol 70 is approximately 24 hours.
Calcium
Calcium is eliminated through renal excretion.

PHARMACODYNAMIC PROPERTIES

Alendronate sodium
Alendronate is a bisphosphonate that, in animal studies, localises preferentially to sites of bone resorption, specifically under osteoclasts, and inhibits osteoclastic bone resorption with no direct effect on bone formation. Since bone formation and bone resorption are coupled, bone formation is also reduced, but less so than resorption, leading to progressive gains in bone mass (see Clinical Trials section for details). Following exposure to alendronate, normal bone is formed that incorporates alendronate into its matrix where it is pharmacologically inactive.

The relative inhibitory activities on bone resorption and mineralisation of alendronate and etidronate were compared in growing rats. The lowest dose of alendronate that interfered with bone mineralisation (leading to osteomalacia) was 6000-fold the antiresorptive dose. The corresponding safety margin for etidronate was one to one. These data indicate that, unlike etidronate, alendronate administered in therapeutic doses is highly unlikely to induce osteomalacia.

Colecalciferol
Vitamin D₃ is produced in the skin by photochemical conversion of 7-dehydrocholesterol to previtamin D₃ by ultraviolet light. This is followed by non-enzymatic isomerisation to vitamin D₃. In the absence of adequate sunlight exposure, vitamin D₃ is an essential dietary nutrient. Vitamin D₃ in skin and dietary vitamin D₃ (absorbed into chylomicrons) is converted to 25-hydroxyvitamin D₃ in the liver. Conversion to the active calcium-mobilising hormone 1,25-dihydroxyvitamin D₃ (calcitriol) in the kidney is stimulated by both parathyroid hormone and hypophosphataemia. The principal action of 1,25-dihydroxyvitamin D₃ is to increase intestinal absorption of both calcium and phosphate as well as regulate serum calcium, renal calcium and phosphate excretion, bone formation and bone resorption.

Vitamin D₃ is required for normal bone formation. Optimal serum levels of 25-hydroxyvitamin D are unknown. Vitamin D insufficiency may be seen with serum levels below 30 – 50 nmol/L. Severe vitamin D deficiency is commonly associated with levels <12.5 nmol/L. Vitamin D insufficiency develops when both sunlight exposure and dietary intake are inadequate. Insufficiency is associated with negative calcium balance, bone loss, and increased risk of skeletal fracture. In severe cases, deficiency results in secondary hyperparathyroidism, hypophosphataemia, proximal muscle weakness and osteomalacia, further increasing the risk of falls and fractures in osteoporotic individuals. Supplemental vitamin D is associated with reduced risk of vitamin D insufficiency as defined by serum hydroxyvitamin D of < 37.5 nmol/L.

OSTEOPOROSIS

WHO utilises the definition of osteoporosis as a disease characterised by low bone mass and microarchitectural deterioration of bone tissue, leading to enhanced bone fragility and a consequent increase in fracture risk. The diagnosis may be confirmed by the finding of low bone mass (for example, at least 2 standard deviations below the gender specific mean for young adults) or by the presence or history of osteoporotic fracture. It occurs in both males and females but is most common among women following the menopause, when bone turnover increases and the rate of bone resorption exceeds that of bone formation, leading to loss of bone mass.
OSTEOPOROSIS IN POSTMENOPAUSAL WOMEN

Daily oral doses of alendronate in postmenopausal women produced biochemical changes indicative of dose-dependent inhibition of bone resorption, including decreases in urinary calcium and urinary markers of bone collagen degradation (such as hydroxyproline, deoxypyridinoline, and cross-linked N-telopeptides of type I collagen). These biochemical changes returned toward baseline values as early as three weeks following the discontinuation of alendronate despite the long retention of alendronate in the skeleton.

Long-term treatment of osteoporosis with FOSAMAX 10 mg/day (for up to five years) reduced urinary excretion of markers of bone resorption, deoxypyridinoline and cross-linked N-telopeptides of type I collagen, by approximately 50% and 70%, respectively, to reach levels similar to those seen in healthy premenopausal women. Similar decreases were seen in patients in osteoporosis prevention studies who received FOSAMAX 5 mg/day. The decrease in the rate of bone resorption indicated by these markers was evident as early as one month and at three to six months reached a plateau that was maintained for the entire duration of treatment with FOSAMAX. In osteoporosis treatment studies FOSAMAX 10 mg/day decreased the markers of bone formation, osteocalcin and total serum alkaline phosphatase, by approximately 50% and 25-30%, respectively, to reach a plateau after 6 to 12 months. Similar though slightly lower reductions in the rate of bone turnover were observed in postmenopausal women during one-year studies with FOSAMAX once weekly 70 mg for the treatment of osteoporosis. In osteoporosis prevention studies FOSAMAX 5 mg/day decreased these markers by approximately 40% and 15%, respectively.

OSTEOPOROSIS IN MEN

Even though osteoporosis is less prevalent in men than in postmenopausal women, a significant proportion of osteoporotic fractures occur in men. The prevalence of vertebral deformities appears to be similar in men and women. All men with osteoporosis should be investigated for hypogonadism and, if necessary, treated for this condition. Treatment of men with osteoporosis with FOSAMAX 10 mg/day for two years reduced urinary excretion of cross-linked N-telopeptides of type I collagen by approximately 60% and bone-specific alkaline phosphatase by approximately 40%. Similar reductions in cross-linked N-telopeptides of type I collagen were seen in men receiving FOSAMAX 70 mg once weekly.

CLINICAL TRIALS

TREATMENT OF OSTEOPOROSIS

FOSAMAX PLUS studies

The effect of alendronate 70 mg/colecalciferol 70 μg on vitamin D status was demonstrated in a 15-week, double-blind, multinational study of 717 osteoporotic postmenopausal women and men (serum 25-hydroxyvitamin D at baseline: mean, 22.2 ng/mL [56 nmol/L]; range, 9-90 ng/mL [22.5-225 nmol/L]). Patients received alendronate 70 mg/colecalciferol 70 μg (2800 IU) (n=350 women, 10 men) or FOSAMAX (alendronate 70 mg (n=332 women, 25 men) once a week; additional vitamin D supplements were prohibited. Patients who were vitamin D deficient [defined as serum 25-hydroxyvitamin D < 9 ng/mL (22.5 nmol/L)] at baseline were excluded. Patients with vitamin D insufficiency at baseline were defined as having serum 25-hydroxyvitamin D levels between 9 ng/mL (22.5nmol/L) and 15 ng/mL (37.5 nmol/L).

The percentage of patients with serum 25-hydroxyvitamin D ≥15 ng/mL (37.5 nmol/L) was significantly higher with alendronate 70 mg/colecalciferol 70 μg vs. alendronate only (89% vs. 68%, respectively). The percentage of patients with serum 25-hydroxyvitamin D ≥9 ng/mL (22.5 nmol/L) was significantly higher.
with alendronate 70 mg/colecalciferol 70 μg vs. alendronate only (99% vs 87%, respectively). There were no differences in mean serum calcium, phosphate, or 24-hour urine calcium between treatment groups. The final levels of 25-hydroxyvitamin D at week 15 are summarised in the table below.

<table>
<thead>
<tr>
<th>25-hydroxyvitamin D Levels after treatment with alendronate 70mg/colecalciferol 70μg and FOSAMAX 70 mg at Week 15* Number (%) of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-hydroxyvitamin D Ranges (nmol/L)</td>
</tr>
<tr>
<td>alendronate 70mg/colecalciferol 70 μg (N=357)</td>
</tr>
<tr>
<td>FOSAMAX 70 mg (N=351)</td>
</tr>
</tbody>
</table>

* Patients who were vitamin D deficient (25-hydroxyvitamin D < 22.5 nmol/L) at baseline were excluded.

The effect of alendronate 70 mg/colecalciferol 70 μg with an additional 70 μg colecalciferol (2800 IU vitamin D₃) for a total of 140 μg colecalciferol (5600 IU vitamin D₃) once weekly was compared to 70mg/colecalciferol 70 μg weekly in a 24-week, extension study that enrolled 652 osteoporotic men and post-menopausal women who completed the above 15-week study. Patients in the colecalciferol 70 μg group received alendronate 70 mg/ colecalciferol 70 μg (n=305 women, 21 men) and those in the colecalciferol 140 μg group received alendronate 70 mg /colecalciferol 70 μg with an additional 70 μg colecalciferol (n=314 women, 12 men) once a week; additional vitamin D supplements were allowed. The primary endpoint was incidence of hypercalciuria, defined as an increase of greater than 25% from baseline in 24-hour urine calcium and to a value greater than the upper limit of normal (300 mg in women, 350 mg in men). The rate of hypercalciuria was 13/311 (4.2%) for the colecalciferol 140 μg group and 9/317 (2.8%) for the colecalciferol 70 μg group, relative risk 1.48 (95% CI 0.64, 3.40).

Secondary endpoints included 25 hydroxyvitamin D levels. The proportions of patients with vitamin D insufficiency (< 37.5 nmol/L) after 39 weeks was 10/321 (3.1%) in the colecalciferol 140 μg group and 18/320 (5.6%) in the colecalciferol 70 μg group.

The percentage of patients with serum 25-hydroxyvitamin D ≥15 ng/mL (37.5 nmol/L) was higher with the colecalciferol 140 μg group vs. the colecalciferol 70 μg group (96.9% vs. 94.4%, respectively), although not statistically significant.

There were no differences detected between mean serum calcium, mean serum phosphate, or mean 24-hour urine calcium between groups. The distribution of the final levels of 25-hydroxyvitamin D at week 39 is summarised in the table below.
| 25-hydroxyvitamin D Levels after treatment with alendronate 70 mg/colecaciferol 70 µg or alendronate 70 mg/colecaciferol 70 µg plus additional colecaciferol 70 µg at week 39 in extension study | Number (%) of Patients |
|---|---|---|---|---|---|---|---|
| 25-hydroxyvitamin D Ranges (nmol/L) | < 22.5 | 22.5-35 | 37.5-47.5 | 50-60 | 62.5-72.5 | 75-155 |
| Vitamin D₃ 5600 IU group*(N=321) | 0 | 10 (3.1) | 29 (9.0) | 79 (24.6) | 87 (27.1) | 116 (36.1) |
| Vitamin D₃ 2800 IU group**(N=320) | 1 (0.3) | 17 (5.3) | 56 (17.5) | 80 (25.0) | 74 (23.1) | 92 (28.7) |

* Patients received FOSAMAX 70mg or alendronate 70mg/colecaciferol 70 µg for the 15-week base study followed by alendronate 70mg/colecaciferol 70 µg and 70 µg additional colecaciferol for the 24-week extension study.

** Patients received FOSAMAX 70mg or alendronate 70mg/colecaciferol 70 µg for the 15-week base study followed by alendronate 70mg/colecaciferol 70 µg and placebo for the additional colecaciferol for 24 week extension study.

**FOSAMAX studies**

**Postmenopausal women**

**Effect on bone mineral density**

The efficacy of FOSAMAX 10 mg once daily in postmenopausal women with osteoporosis was demonstrated in two large three year multicentre studies of virtually identical design, one performed in the United States and the other in 15 different countries (Multinational), which enrolled 478 and 516 patients, respectively. The following graph shows the mean increases in bone mineral density (BMD) of the lumbar spine, femoral neck and trochanter in patients receiving FOSAMAX 10 mg/day relative to placebo-treated patients at three years for each of these studies.

**Increase in BMD**

**FOSAMAX 10 mg/day in Two Studies at Three Years**
These increases were highly significant relative both to baseline and placebo at each measurement site in each study. Increases in BMD were evident as early as three months and continued throughout the entire three years of treatment (see figure below for lumbar spine results). In the two-year extension of these studies, treatment with FOSAMAX 10 mg/day resulted in continued increases in BMD at the lumbar spine and trochanter (absolute additional increases between years 3 and 5: lumbar spine 0.94%; trochanter 0.88%). BMD at the femoral neck, forearm and total body were maintained. Thus, FOSAMAX appears to reverse the progression of osteoporosis as assessed by increased bone mineral density. FOSAMAX was similarly effective regardless of age, race, baseline rate of bone turnover, renal function and use of concomitant medications.

**Time Course of Effect of FOSAMAX 10 mg/day versus Placebo:**

**Lumbar Spine BMD Percent Change from Baseline**

![Graph showing lumbar spine BMD percent change from baseline over time](image)

In patients with postmenopausal osteoporosis treated with FOSAMAX 10 mg/day for one or two years the effects of treatment withdrawal were assessed. Following discontinuation, there were no further increases in bone mass and the rates of bone loss were similar to those in the placebo groups. These data indicate that continuous treatment with FOSAMAX is required to produce progressive increases in bone mass.

The therapeutic equivalence of FOSAMAX once weekly 70 mg (n = 519) and FOSAMAX 10 mg daily (n = 370) was demonstrated in a one-year, double-blind, multicentre study of postmenopausal women with osteoporosis. The mean increases from baseline in lumbar spine BMD at one year were 5.1% (4.8, 5.4%; 95% CI) in the70 mg once weekly group and 5.4% (5.0, 5.8%; 95% CI) in the 10 mg daily group. The two treatment groups were also similar with regard to BMD increases at other skeletal sites. While there are no placebo-controlled fracture data for the once weekly 70 mg tablet, the increases in bone density support the expectation that FOSAMAX once weekly 70 mg will have effects to reduce the incidence of fractures similar to those of the 10 mg daily treatment (see below). The study was not designed to evaluate the relative compliance of FOSAMAX once weekly 70 mg and 10 mg daily.
Effect on fracture incidence
Although the US and Multinational studies (see above) were not designed to assess fracture rates as the primary endpoint, preplanned analysis of the data pooled across once daily doses at three years revealed a statistically significant and clinically meaningful 48% reduction in the proportion of patients treated with FOSAMAX experiencing one or more vertebral fractures (3.2%) relative to those treated with placebo (6.2%). Furthermore, of patients who sustained any vertebral fracture, those treated with FOSAMAX experienced less height loss (5.9 mm vs 23.3 mm) due to a reduction in both the number and severity of fractures.

The Fracture Intervention Trial (FIT) consisted of two studies in postmenopausal women: the Three-Year Study of patients who had at least one baseline vertebral (compression) fracture and the Four-Year Study of patients with low bone mass but without baseline vertebral fracture.

Effect of FOSAMAX on Fracture Incidence in the Three-Year Study of FIT (% of patients with vertebral fracture at baseline)

<table>
<thead>
<tr>
<th></th>
<th>FOSAMAX (n=1022)</th>
<th>Placebo (n=1005)</th>
<th>Absolute Reduction in Fracture Incidence</th>
<th>Relative Reduction in Fracture Risk %</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 1 new vertebral fracture</td>
<td>7.9</td>
<td>15.0</td>
<td>7.1</td>
<td>47</td>
<td>&lt;.001*</td>
</tr>
<tr>
<td>≥ 2 new vertebral fractures</td>
<td>0.5</td>
<td>4.9</td>
<td>4.4</td>
<td>90</td>
<td>&lt;.001*</td>
</tr>
<tr>
<td>≥ 1 painful vertebral fracture</td>
<td>2.3</td>
<td>5.0</td>
<td>2.7</td>
<td>54</td>
<td>&lt;.002**</td>
</tr>
<tr>
<td>Any painful (inc. vertebral) fracture</td>
<td>13.8</td>
<td>18.1</td>
<td>4.3</td>
<td>26</td>
<td>0.007**</td>
</tr>
<tr>
<td>Hip fractures</td>
<td>1.1</td>
<td>2.2</td>
<td>1.1</td>
<td>51</td>
<td>0.047**</td>
</tr>
<tr>
<td>Wrist (forearm) fractures</td>
<td>2.2</td>
<td>4.1</td>
<td>1.9</td>
<td>48</td>
<td>0.013**</td>
</tr>
</tbody>
</table>

* Mantel-Haenzel chi ** Log Rank test

Furthermore, in this population of patients with baseline vertebral fracture, treatment with FOSAMAX significantly reduced the incidence of hospitalisations resulting from any cause (25.0% vs. 30.7%, a 20% relative risk reduction). This difference appears to be related, at least in part, to the reduction in fracture incidence.

Fracture Intervention Trial: Four-Year Study (patients with low bone mass but without a baseline vertebral fracture)
This randomised, double-blind, placebo-controlled, 4432-patient study (FOSAMAX, n=2214; placebo, n=2218) further demonstrated the reduction in fracture incidence due to FOSAMAX. The intent of the study was to recruit women with osteoporosis, i.e. with a baseline femoral neck BMD at least two standard deviations below the mean for young adult women. However, due to subsequent revisions to the normative values for femoral neck BMD, 31% of patients were found not to meet this entry criterion and
thus this study included both osteoporotic and non-osteoporotic women. The results are shown in the table below for the patients with osteoporosis.

| Effect of FOSAMAX on Fracture Incidence in Osteoporotic† Patients in the Four-Year Study of FIT (patients without vertebral fracture at baseline) |
|---|---|---|---|
| % of Patients | FOSAMAX (n=1545) | Placebo (n=1521) | Absolute Reduction in Fracture Incidence | Relative Reduction in Fracture Risk % |
| Patients with: | | | | |
| ≥ 1 painful fracture | 12.9 | 16.2 | 3.3 | 22** |
| ≥ 1 vertebral fracture†† | 2.5 | 4.8 | 2.3 | 48*** |
| ≥ 1 painful vertebral fracture | 1.0 | 1.6 | 0.6 | (NS) |
| Hip fracture | 1.0 | 1.4 | 0.4 | (NS) |
| Wrist (forearm) fracture | 3.9 | 3.8 | -0.1 | None |

†Baseline femoral neck BMD at least 2 SD below the mean for young adult women
††Number evaluable for vertebral fracture: FOSAMAX, n=1426; placebo, n=1428
**Not significant. This study was not powered to detect differences at these sites.
**p = 0.01, ***p <0.001

**Consistency of fracture results**

The reductions in the incidence of vertebral fractures (FOSAMAX vs. placebo) in the Three and Four-Year Studies of FIT were consistent with that in the combined US and Multinational (US/Mult) treatment studies (see above), in which 80% of the women did not have a vertebral fracture at baseline. During these studies, treatment with FOSAMAX reduced the proportion of women experiencing at least one new vertebral fracture by approximately 50% (Three-Year FIT: 47% reduction, p<0.001; Four-Year FIT: 44% reduction, p=0.001 US/Mult, 48% reduction, p=0.034). In addition, FOSAMAX reduced the proportion of women experiencing multiple (two or more) new vertebral fractures by approximately 90% in the US/Mult and Three-Year FIT studies (p<0.001). Thus, FOSAMAX reduced the incidence of vertebral fractures whether or not patients had experienced a previous vertebral fracture.

Overall, these results demonstrate the consistent efficacy of FOSAMAX in reducing the incidence of fractures, including those of the spine and hip, which are the sites of osteoporotic fracture associated with greatest morbidity.

**Bone histology**

Bone histology in 270 postmenopausal patients with osteoporosis treated with FOSAMAX at doses ranging from 1 to 20 mg/day for one, two or three years revealed normal mineralisation and structure, as well as the expected decrease in bone turnover relative to placebo. These data, together with the normal bone histology and increased bone strength observed in ovarietomised rats and baboons exposed to
long term alendronate treatment, indicate that bone formed during therapy with FOSAMAX is of normal quality.

Concomitant Use with Oestrogen/Hormone Replacement Therapy

The effects on BMD of treatment with FOSAMAX 10 mg once daily and conjugated oestrogen (0.625 mg/day) either alone or in combination were assessed in a two-year, double-blind, placebo-controlled study of hysterectomised postmenopausal osteoporotic women (n=425). At two years, the increases in lumbar spine BMD from baseline were significantly greater with the combination (8.3%) than with either oestrogen or FOSAMAX alone (both 6.0%).

The effects on BMD when FOSAMAX was added to stable doses (for at least one year) of HRT (oestrogen ± progestin) were assessed in a one-year, double-blind, placebo-controlled study in postmenopausal osteoporotic women (n=428). The addition of FOSAMAX 10 mg once daily to HRT produced, at one year, significantly greater increases in lumbar spine BMD (3.7%) vs. HRT alone (1.1%).

In these studies, significant increases or favourable trends in BMD for combined therapy compared with HRT alone were seen at the total hip, femoral neck, and trochanter. No significant effect was seen for total body BMD.

Men

The efficacy of FOSAMAX 10 mg once daily in men with osteoporosis was demonstrated in a two-year, double-blind, placebo-controlled, multicentre study, which enrolled 241 osteoporotic men between the ages of 31 and 87 years. All patients in the study (97.5% of whom were Caucasian) had either: 1) a BMD T-score ≤ -2 at the femoral neck and ≤ -1 at the lumbar spine or 2) a baseline osteoporotic fracture and a BMD T-score of ≤ -1 at the femoral neck. At two years the mean increases relative to placebo in BMD in men receiving FOSAMAX 10 mg daily were; lumbar spine 5.3%; femoral neck 2.6%; trochanter 3.1%; and total body 1.6% (all p < 0.001). FOSAMAX was effective regardless of age, gonadal function, baseline rate of bone turnover, or baseline BMD. Consistent with the much larger studies in postmenopausal women, in these men FOSAMAX 10 mg daily reduced the incidence of new vertebral fracture (post-hoc analysis; assessment by quantitative radiography) relative to placebo (0.8% vs 7.1%, respectively; p = 0.017) and correspondingly, also reduced height loss (-0.6 vs –2.4 mm, respectively; p = 0.022).

The effects of discontinuation of FOSAMAX treatment have not been studied in this population.

Prevention of osteoporosis

For the prevention of osteoporosis, FOSAMAX may be considered in postmenopausal women who are at risk of developing osteoporosis and for whom the desired clinical outcome is to maintain bone mass and to reduce the risk of future fracture.

Bone loss is particularly rapid in postmenopausal women younger than age 60. Risk factors often associated with the development of postmenopausal osteoporosis include early menopause; moderately low bone mass (for example, at least 1 standard deviation below the mean for healthy young adult women; thin body build and family history of osteoporosis). The presence of such risk factors may be important when considering the use of FOSAMAX for prevention of osteoporosis.

Prevention of bone loss was demonstrated in both a two-year (n=1609) and a three-year (n=447) study of women 40-60 years of age who were at least 6 months postmenopausal. In these studies, FOSAMAX or
matching placebo was administered once daily to non-osteoporotic women (overall baseline spine BMD approximately one SD lower that the premenopausal mean BMD).

As expected, in the placebo-treated patients BMD losses of approximately 1% per year were seen at the spine, hip (femoral neck and trochanter) and total body. In contrast, FOSAMAX 5 mg/day effectively prevented bone loss, and induced highly significant increases in bone mass at each of these sites. The mean percent increase in BMD from baseline at the lumbar spine, femoral neck, trochanter and total body at the end of the two-year study were 3.46%, 1.27%, 2.98% and 0.67%, respectively, and those at the end of the three-year study were 2.89%, 1.10%, 2.71% and 0.32%, respectively (see figures below).

In addition, FOSAMAX 5 mg/day reduced the rate of bone loss in the forearm by approximately half relative to placebo. FOSAMAX 5 mg/day was similarly effective in this population regardless of age, time since menopause, race and baseline rate of bone turnover.

Osteoporosis Prevention Studies in Postmenopausal Women

Change in BMD from Baseline
2 - Year Study

![Graph showing BMD changes from baseline for 2-year study.]

Change in BMD from Baseline
3 - Year Study

![Graph showing BMD changes from baseline for 3-year study.]

In the two year study (n=1609), of 435 women willing to be randomised to an open-label oestrogen/progestin therapy subgroup, 55 in the US centres received conjugated equine oestrogens 0.625 mg daily (Premarin™) in combination with medroxyprogesterone acetate 5 mg daily (Provera™), whilst 55 in the European centres received higher doses of oestrogen given as 17β-oestradiol 2 mg daily in combination with norethisterone acetate 1 mg daily (10 days per 28 day cycle) (Trisequens™). Only women in the European centres using Trisequens experienced increases in BMD at the spine, hip and total body that were different from those in women using FOSAMAX 5 mg. At these centres, two-year increases in BMD at the lumbar spine were 5.1% and 3.3%, femoral neck 2.4% and 1.4%, trochanter 4.8% and 2.8%, and total body 2.6% and 0.6% in the Trisequens and FOSAMAX 5 mg groups, respectively. Increases with Premarin and Provera in the US centres were not statistically different to those obtained with FOSAMAX 5 mg. Both FOSAMAX 5 mg and oestrogen/progestin therapy prevented bone loss in these non-osteoporotic women.
Bone histology was normal in the 28 patients biopsied at the end of three years who received FOSAMAX doses of up to 10 mg/day.

Glucocorticoid - Induced Osteoporosis
Sustained use of glucocorticoids is commonly associated with development of osteoporosis and resulting fractures (especially vertebral, hip and rib). It occurs both in males and females of all ages. Bone loss occurs as a result of a lower rate of bone formation relative to that of bone resorption. Alendronate decreases bone resorption without directly inhibiting bone formation.

In clinical studies of one year’s duration, FOSAMAX 5 and 10 mg/day reduced cross-linked N-telopeptides of type 1 collagen (a marker of bone resorption) by approximately 60% and reduced bone-specific alkaline phosphatase and total serum alkaline phosphatase (markers of bone formation) by approximately 25 to 30% and 12 to 15%, respectively. As a result of inhibition of bone resorption, FOSAMAX 5 and 10 mg/day induced asymptomatic decreases in serum calcium (approximately 1%) and serum phosphate (approximately 2 to 7%).

The efficacy of FOSAMAX 5 and 10 mg once daily in men and women receiving glucocorticoids (at least 7.5 mg/day of prednisone or equivalent) was demonstrated in two, one-year placebo controlled, double-blind, multicentre studies (n: total = 560, males = 176) of virtually identical design. Most of the patients were ambulant, caucasian and non-smokers. The study population included patients with rheumatoid arthritis, polymyalgia rheumatica, systemic lupus erythematosus, pemphigus, asthma, myositis, inflammatory bowel disease, giant cell arteritis, sarcoidosis, myasthenia gravis, chronic obstructive pulmonary disease and nephrotic syndrome. The range and duration of prior corticosteroid use in the studies was 0 to 538 months with a mean of 43.6 months and a median of 12 months. The range of prednisone dose at study commencement was 5 to 135 mg/day with a mean of 18.4 mg and a median of 10 mg daily. Fifty-seven percent of patients had osteopenia/osteoporosis at study commencement. Patients received supplemental calcium and vitamin D. At one year, the mean increases relative to placebo in BMD in patients receiving FOSAMAX 5 mg/day from the combined studies were: lumbar spine, 2.41%; femoral neck, 2.19%; and trochanter, 1.65%. These increases were significant at each site. Total body BMD was maintained with FOSAMAX 5 mg/day indicating that the increase in bone mass of the spine and hip did not occur at the expense of other sites. The increases in BMD with FOSAMAX 10 mg/day were greater than those with FOSAMAX 5 mg/day in all patients except for postmenopausal women not receiving oestrogen therapy. In these women, the increases (relative to placebo) with FOSAMAX 10 mg/day were greater than those with FOSAMAX 5 mg/day at the lumbar spine (4.11% vs. 1.56%) and trochanter (2.84% vs. 1.67%), but not at other sites. FOSAMAX was effective regardless of dose or duration of glucocorticoid use. In addition, FOSAMAX was similarly effective regardless of age (<65 vs. ≥65 years), race (Caucasian vs. other races), gender, baseline BMD, baseline bone turnover, and use with a variety of common medications.

Bone histology was normal in the 49 patients biopsied at the end of one year who received FOSAMAX at doses of up to 10 mg/day.

Paget's disease of bone
Paget's disease of bone is a chronic, focal skeletal disorder characterised by greatly increased and disorderly bone remodelling. Excessive osteoclastic bone resorption is followed by osteoblastic new bone formation, leading to the replacement of the normal bone architecture by disorganised, enlarged and weakened bone structure.
FOSAMAX decreases the rate of bone resorption directly, which leads to an indirect decrease in bone formation. FOSAMAX 40 mg once daily for six months produced highly significant decreases in serum alkaline phosphatase, an objective measure of disease severity. Furthermore, normal lamellar bone was produced during treatment with FOSAMAX, even where pre-existing bone was woven and disorganised.

As a result of the inhibition of bone resorption, FOSAMAX induced generally mild, transient and asymptomatic decreases in serum calcium and phosphate.

The efficacy of FOSAMAX 40 mg once daily for six months was demonstrated in two double-blind clinical studies of male and female patients with moderate to severe Paget's disease (alkaline phosphatase at least twice the upper limit of normal): a placebo-controlled multinational study and a US comparative study with etidronate disodium 400 mg/day. The following figure shows the mean percent changes from baseline in serum alkaline phosphatase for up to six months of randomised treatment.

At six months, the mean percent suppression from baseline in serum alkaline phosphatase in patients treated with FOSAMAX (-79% and -73% in the two studies) was significantly greater than that achieved with etidronate disodium 400 mg/day (-44%) and contrasted with the complete lack of response in placebo-treated patients (+8.0%). Response (defined as either normalisation of serum alkaline phosphatase or decrease from baseline ≥ 60%) occurred in approximately 85% of patients treated with FOSAMAX in the combined studies versus 30% in the etidronate group and 0% in the placebo group. FOSAMAX was similarly effective irrespective of age, gender, race, renal function, concomitant medications, prior use of other bisphosphonates, or baseline alkaline phosphatase.
INDICATIONS

FOSAMAX is indicated for the treatment of:

- Osteoporosis*, including glucocorticoid-induced osteoporosis
- Paget's disease of bone

FOSAMAX is also indicated for the prevention of:

- Osteoporosis in postmenopausal women with low bone mass (at least 1 standard deviation below the mean for young adults)
- Glucocorticoid-induced osteoporosis in those patients on long term corticosteroid therapy (see Clinical Trials)

FOSAMAX PLUS Once Weekly tablet and FOSAMAX PLUS 70mg/140 µg are indicated for the treatment of:

- Osteoporosis* in select patients where vitamin D supplementation is recommended

FOSAMAX PLUS D-Cal is indicated for the treatment of:

- Osteoporosis* in select patients where vitamin D and calcium supplementation is recommended

* Prior to treatment, osteoporosis must be confirmed by:

- the finding of low bone mass of at least 2 standard deviations below the gender specific mean for young adults or by
- the presence of osteoporotic fracture

CONTRAINDICATIONS

FOSAMAX/FOSAMAX PLUS (including the FOSAMAX PLUS component of FOSAMAX PLUS D-Cal):

- Abnormalities of the oesophagus which delay oesophageal emptying such as stricture or achalasia
- Inability to stand or sit upright for at least 30 minutes
- Hypersensitivity to any component of this product
- Hypocalcaemia (see PRECAUTIONS)
BoneCal component of FOSAMAX PLUS D-Cal:

- Hypercalcaemia
- Severe hypercalciuria
- Hypersensitivity to any component of this product

PRECAUTIONS

SEVERE OESOPHAGEAL ULCERATION HAS BEEN REPORTED IN PATIENTS TAKING ALENDRONATE. SEE DOSAGE AND ADMINISTRATION. PHYSICIANS SHOULD THEREFORE BE ALERT TO ANY SIGNS OR SYMPTOMS SIGNALING A POSSIBLE OESOPHAGEAL REACTION. PATIENTS SHOULD BE INSTRUCTED TO DISCONTINUE FOSAMAX, FOSAMAX PLUS OR THE FOSAMAX PLUS COMPONENT OF FOSAMAX PLUS D-CAL AND SEEK MEDICAL ATTENTION IF THEY DEVELOP DYSPHAGIA, ODYNOPHAGIA OR RETROSTERNAL PAIN.

GENERAL

Causes of osteoporosis other than hypogonadism, aging and glucocorticoid use should be considered. If there are clinical reasons to suspect hypocalcaemia and/or vitamin D deficiency (serum levels 25 hydroxyvitamin D < 9 nmol/L), the appropriate diagnostic tests should be performed. Hypocalcaemia must be corrected before initiating therapy with FOSAMAX, FOSAMAX PLUS or the FOSAMAX PLUS component of FOSAMAX PLUS D-Cal (See CONTRAINDICATIONS). Other disturbances of mineral metabolism (such as vitamin D deficiency) should also be effectively treated. In patients with these conditions, serum calcium and symptoms of hypocalcaemia should be monitored during therapy with FOSAMAX, FOSAMAX PLUS or the FOSAMAX PLUS component of FOSAMAX PLUS D-Cal. The content of vitamin D in FOSAMAX PLUS (70 mg/70 µg or 70 mg/140 µg) is not suitable for correction of vitamin D deficiency.

FOSAMAX PLUS (70 mg/70 µg or 70 mg/140 µg) should not be used as sole treatment for osteoporotic patients with a vitamin D deficiency (defined as serum 25-hydroxyvitamin D < 9 ng/mL (22.5 nmol/L) (see Clinical Trials, FOSAMAX PLUS study). FOSAMAX PLUS (70 mg/70 µg or 70 mg/140 µg) should not be used to treat osteomalacia. Vitamin D should be used to treat osteomalacia. FOSAMAX PLUS (70 mg/70 µg or 70 mg/140 µg) has not been studied in patients with vitamin D deficiency.

Small, asymptomatic decreases in serum calcium and phosphate may occur, especially in patients with Paget’s disease, in whom the pretreatment rate of bone turnover may be greatly elevated, and in patients receiving glucocorticoids, in whom calcium absorption may be decreased.

Ensuring adequate calcium and vitamin D intake is especially important in patients with Paget’s disease of bone and in patients receiving glucocorticoids.

Alendronate

Alendronate, like other bisphosphonates, may cause local irritation of the upper gastrointestinal mucosa.

Oesophageal adverse experiences, such as oesophagitis, oesophageal ulcers and oesophageal erosions, rarely followed by oesophageal stricture or perforation, have been reported in patients receiving treatment with alendronate. In some cases these have been severe and required hospitalisation.
The risk of severe oesophageal adverse experiences appears to be greater in patients who lie down after taking FOSAMAX, FOSAMAX PLUS or the FOSAMAX PLUS component of FOSAMAX PLUS D-Cal and/or who fail to swallow it with the recommended amount of water, and/or who continue to take FOSAMAX, FOSAMAX PLUS or the FOSAMAX PLUS component of FOSAMAX PLUS D-Cal after developing symptoms suggestive of oesophageal irritation. Therefore, it is very important that the full dosing instructions are provided to, and understood by, the patient (see DOSAGE AND ADMINISTRATION).

While no increased risk was observed in extensive clinical trials, there have been rare (post-marketing) reports of gastric and duodenal ulcers, some severe and with complications.

Because of possible irritant effects of alendronate on the upper gastrointestinal mucosa and a potential for worsening of the underlying disease, caution should be used when FOSAMAX, FOSAMAX PLUS or the FOSAMAX PLUS component of FOSAMAX PLUS D-Cal is given to patients with active upper gastrointestinal problems, such as dysphagia, oesophageal diseases (including known Barrett's oesophagus), gastritis, duodenitis, or ulcers.

Colecalciferol
Vitamin D₃ may increase the magnitude of hypercalcemia and/or hypercalciuria when administered to patients with diseases associated with unregulated overproduction of calcitriol (e.g., leukaemia, lymphoma, sarcoidosis). Urine and serum calcium should be monitored in these patients.

Patients with malabsorption may not adequately absorb vitamin D₃.

DENTAL
Localised osteonecrosis of the jaw (ONJ), generally associated with tooth extraction and/or local infection (including osteomyelitis) with delayed healing, has been reported rarely with oral bisphosphonates including FOSAMAX (see ADVERSE REACTIONS, Post-Marketing Experience). As of May 2004, ONJ after bisphosphonate treatment has been described in a total of 99 cases in two large case series, 7 of which were taking oral bisphosphonates. As of 3 Nov 2006, the Australian Adverse Drug Reactions Advisory Committee has received 25 reports of ONJ in patients receiving alendronate. Most reported cases of bisphosphonate-associated ONJ have been in cancer patients treated with intravenous bisphosphonates. Known risk factors for ONJ include a diagnosis of cancer, concomitant therapies (e.g., chemotherapy, radiotherapy, corticosteroids), poor oral hygiene, co-morbid disorders (e.g., periodontal and/or other pre-existing dental disease, anaemia, coagulopathy, infection) and smoking.

Prior to treatment with bisphosphonates, a dental examination with appropriate preventative dentistry should be considered in patients with possible risk factors.

Before commencing invasive dental procedures, patients and their dentist should be advised of the risks and reports of osteonecrosis of the jaw so that dental symptoms, including toothache, developing during treatment can be fully assessed for cause before treatment of the tooth commences.

For patients requiring invasive dental surgery (eg. tooth extraction, dental implants), there are no definitive data available to establish whether discontinuation of bisphosphonate treatment reduces the risk of ONJ. Therefore clinical judgment of the treating physician and/or oral surgeon should guide the management plan, including discontinuation of bisphosphonate treatment, of each patient based on individual benefit/risk assessment.
In patients who develop ONJ while on bisphosphonate therapy, the clinical judgment of the treating physician should guide the management plan to include appropriate care by an oral surgeon and discontinuation of bisphosphonate therapy should be based on individual benefit/risk assessment. Surgery at the affected area may exacerbate the condition.

**ATYPICAL STRESS FRACTURES**

A small number of long-term (usually longer than three years) alendronate-treated patients developed stress fractures of the proximal femoral shaft (also known as insufficiency fractures), some of which occurred in the absence of apparent trauma. Some patients experienced prodromal pain in the affected area, often associated with imaging features of stress fracture, weeks to months before a complete fracture occurred. Approximately one third of these fractures were bilateral; therefore the contralateral femur should be examined in patients who have sustained a femoral stress fracture. The number of reported cases of this condition is very low (some 40 reported cases world-wide). Patients with suspected stress fractures should be evaluated, including evaluation for known causes and risk factors (e.g., vitamin D deficiency, malabsorption, glucocorticoid use, previous stress fracture, lower extremity arthritis or fracture, extreme or increased exercise, diabetes mellitus, chronic alcohol abuse), and receive appropriate orthopaedic care. Discontinuation of bisphosphonate therapy in patients with stress fractures is advisable pending evaluation of the patient, based on individual benefit/risk assessment. A cause and effect relationship between bisphosphonate use and stress fractures has not been excluded.

**MUSCULOSKELETAL PAIN**

Bone, joint, and/or muscle pain has been reported in patients taking bisphosphonates. In post-marketing experience, these symptoms have rarely been severe and/or incapacitating (see ADVERSE REACTIONS, Post-Marketing Experience). The time to onset of symptoms varied from one day to several months after starting treatment. Most patients had relief of symptoms after stopping treatment. A subset had recurrence of symptoms when rechallenged with the same drug or another bisphosphonate.

**RENAL INSUFFICIENCY**

FOSAMAX and FOSAMAX PLUS (70 mg/70 μg or 70 mg/140 μg or D-Cal) are not recommended for patients with creatinine clearance < 35mL/min (see DOSAGE AND ADMINISTRATION).

**NEPHROLITHIASIS AND HYPERCALCIURIA**

Patients with a history of either nephrolithiasis or hypercalciuria may require special diets that limit their calcium intake. The calcium content of BoneCal should be considered when these diets are prescribed.

**DOsing INSTRUCTIONS FOR PATIENTS**

**FOSAMAX /FOSAMAX PLUS tablets (including the FOSAMAX PLUS component of FOSAMAX PLUS D-Cal)**

To facilitate delivery to the stomach and thus reduce the potential for oesophageal irritation patients should be instructed to swallow each tablet of FOSAMAX, FOSAMAX PLUS (70 mg/70 μg or 70 mg/140 μg) or the FOSAMAX PLUS component of FOSAMAX PLUS D-Cal with a full glass of water. Patients should be instructed not to lie down for at least 30 minutes and until after their first food of the day. Patients should not chew or suck on the tablet because of a potential for oropharyngeal ulceration. Patients should be specifically instructed not to take FOSAMAX, FOSAMAX PLUS (70 mg/70 μg or 70 mg/140 μg) or the FOSAMAX PLUS component of FOSAMAX PLUS D-Cal at bedtime or before arising for the day. Patients should be informed that failure to follow these instructions may increase their risk of oesophageal problems. Patients should be instructed that if they develop symptoms of oesophageal disease (such as difficulty or pain upon swallowing, retrosternal pain or new or worsening heartburn) they
should stop taking FOSAMAX or FOSAMAX PLUS (70 mg/70 μg or 70 mg/140 μg) or the FOSAMAX PLUS component of FOSAMAX PLUS D-Cal and consult their physician.

Patients should be instructed that if they miss a dose of FOSAMAX once weekly, FOSAMAX PLUS (70 mg/70 μg or 70 mg/140 μg) or the FOSAMAX PLUS component of FOSAMAX PLUS D-Cal, they should take one tablet on the morning after they remember. They should not take two tablets on the same day but should return to taking one tablet once a week, as originally scheduled on their chosen day.

Additional Instructions for FOSAMAX PLUS D-Cal
FOSAMAX PLUS D-Cal is a combination pack consisting of 4 once weekly tablets of FOSAMAX PLUS 70mg/140μg and 48 tablets of BoneCal. One tablet of FOSAMAX PLUS 70 mg/140 μg should be taken on the first day. Beginning on the next day, one or two BoneCal tablets should be taken daily for 6 days. This 7 day cycle should be repeated each week. With this regimen FOSAMAX PLUS and BoneCal are not taken on the same day.

The FOSAMAX PLUS component should always be taken on the same day each week, in accordance with the directions as described above. Patients should be instructed to commence the BoneCal component on the day after the FOSAMAX PLUS tablet is taken. Patients should be instructed to take one or two tablets each day with food for the next 6 days, depending on their need for calcium supplementation.

Patients should be instructed that if they miss a dose of FOSAMAX PLUS 70 mg/140 μg, they should take one tablet on the morning after they remember. They should not take two tablets on the same day but should return to taking one tablet once a week, as originally scheduled on their chosen day. On the following day, they should take their next dose of BoneCal.

Patients should be instructed that if they miss a dose of BoneCal, they should omit that dose and continue taking the tablets on the day that they remember.

EFFECTS ON FERTILITY
Alendronate sodium
Alendronate sodium had no effect on fertility in male and female rats at oral doses of up to 9 and 15 mg/kg/day.

No studies on the effects on fertility have been carried out using the alendronate and colecalciferol combination.

USE IN PREGNANCY (Category B3)
Alendronate sodium
Alendronate has not been studied in pregnant women and should not be given to them. In studies with pregnant rats, oral alendronate doses of 2 mg/kg/day and above resulted in dystocia due to maternal hypocalcaemia. Foetal weight was reduced in rats at maternal doses greater than 5 mg/kg/day. No teratogenic effects were seen in rats or rabbits at oral doses up to 25 and 35 mg/kg/day, respectively.

Colecalciferol
No data are available for colecalciferol (vitamin D3). Intramuscular administration of high doses (≥ 10,000 IU/every other day) of ergocalciferol (vitamin D2) to pregnant rabbits resulted in higher incidence of foetal aortic stenosis compared to controls. Administration of vitamin D2 (40,000 IU/day) to pregnant rats resulted in neonatal death, decreased foetal weight, and impaired osteogenesis of long bones postnatally.
No studies on the reproductive toxicity potential of the alendronate and colecalciferol combination have been carried out in animals.

USE IN LACTATION
FOSAMAX, FOSAMAX PLUS (70 mg/70 μg or 70 mg/140 μg) and the FOSAMAX PLUS component of FOSAMAX PLUS D-Cal have not been studied in breast-feeding women and should not be given to them. No studies using the combination of alendronate and colecalciferol have been carried out in lactating animals.

PAEDIATRIC USE
FOSAMAX, FOSAMAX PLUS (70 mg/70 μg or 70 mg/140 μg) and the FOSAMAX PLUS component of FOSAMAX PLUS D-Cal have not been studied in children and should not be given to them.

USE IN THE ELDERLY
In controlled trials, there was no age-related difference in the efficacy or safety profiles of FOSAMAX, FOSAMAX PLUS (70 mg/70 μg or 70 mg/140 μg) or the FOSAMAX PLUS component of FOSAMAX PLUS D-Cal.

CARCINOGENICITY
Alendronate sodium
No evidence of carcinogenic effect was observed in a 105-week study in rats receiving oral doses up to 3.75 mg/kg/day and in a 92-week study in mice receiving oral doses up to 10 mg/kg/day.

The carcinogenic potential of colecalciferol alone or the alendronate and colecalciferol combination has not been studied.

GENOTOXICITY
Alendronate sodium
Alendronate did not cause gene mutations in bacteria or in mammalian cells in vitro, nor did it cause DNA damage in rat hepatocytes in vitro (alkaline elution assay). In assays of chromosomal damage, alendronate was weakly positive in an in vitro assay using Chinese hamster ovary cells at cytotoxic concentrations (≥5mM), but was negative at IV doses up to 25 mg/kg/day (75 mg/m²) in an in vivo assay (chromosomal aberrations in mouse bone marrow).

Colecalciferol
Calcitriol, the active hormonal metabolite of colecalciferol, was not genotoxic in the microbial mutagenesis assay with or without metabolic activation, or in an in vivo micronucleus assay in mice.

No studies on the genotoxic potential have been carried out using the alendronate and colecalciferol combination.

INTERACTIONS WITH OTHER MEDICINES
Alendronate sodium
If taken at the same time it is likely that calcium supplements, antacids and other oral medications will interfere with absorption of alendronate. Therefore, patients must wait at least one-half hour after taking FOSAMAX or FOSAMAX PLUS (70 mg/70 μg or 70 mg/140 μg) or the FOSAMAX PLUS component of FOSAMAX PLUS D-Cal before taking any other oral medication.

No other drug interactions of clinical significance are anticipated though the concomitant medication with two or more bisphosphonates cannot be recommended because of the lack of clinical data.
Concomitant use of HRT (oestrogen ± progestin) and FOSAMAX was assessed in two clinical studies of one or two years’ duration in postmenopausal osteoporotic women. Combined use of FOSAMAX and HRT resulted in greater increases in bone mass, together with greater decreases in bone turnover, than seen with either treatment alone. In these studies, the safety and tolerability profile of the combination was consistent with those of the individual treatments (see ADVERSE REACTIONS, Clinical Studies, Concomitant use with oestrogen/hormone replacement therapy).

Specific interaction studies were not performed. FOSAMAX (10 mg and 5 mg/day) was used in studies of treatment and prevention of osteoporosis in postmenopausal women, men and glucocorticoid users, with a wide range of commonly prescribed drugs without evidence of clinical adverse interactions. In clinical studies, the incidence of upper gastrointestinal adverse events was increased in patients receiving daily therapy with dosages of FOSAMAX greater than 10 mg and aspirin-containing products. However, this was not observed in studies with FOSAMAX once weekly 70 mg.

Since Non Steroidal Anti-inflammatory Drug (NSAID) use is associated with gastrointestinal irritation, caution should be used during concomitant use with alendronate.

Colecalciferol
Olestra, mineral oils, orlistat, and bile acid sequestrants (e.g., cholestyramine, colestipol) may impair the absorption of vitamin D. Anticonvulsants, cimetidine, and thiazides may increase the catabolism of vitamin D.

Calcium carbonate
Calcium carbonate may interfere with the absorption of some concomitantly administered medications (e.g. tetracycline preparations). For this reason, the effect of calcium on the absorption of concomitantly administered medications should be reviewed.

Thiazide diuretics may reduce the urinary excretion of calcium.

Systemic glucocorticoids may reduce calcium absorption. During concomitant use with the BoneCal component of FOSAMAX PLUS D-Cal, it may be necessary to increase the amount of calcium supplementation.

EFFECT ON ABILITY TO DRIVE OR USE MACHINERY
No studies on the effects on the ability to drive and use machines have been performed. However, certain adverse reactions that have been reported with FOSAMAX or FOSAMAX PLUS may affect some patients’ ability to drive or operate machinery. Individual responses to FOSAMAX or FOSAMAX PLUS may vary (see ADVERSE EFFECTS).

EFFECT ON LABORATORY TESTS
In double-blind, multicentre, controlled studies, asymptomatic, mild and transient decreases in serum calcium and phosphate were observed in approximately 18 and 10%, respectively, of patients taking FOSAMAX versus approximately 12 and 3% of those taking placebo. However, the incidences of decreases in serum calcium to <8.0 mg/dL (2.0 mM) and serum phosphate to ≤ 2.0 mg P/dL (0.65 mM) were similar in both treatment groups.
CLINICAL STUDIES

FOSAMAX

In clinical studies FOSAMAX was generally well tolerated. In studies of up to five years in duration, side effects, which usually were mild, generally did not require discontinuation of therapy.

Treatment of osteoporosis

Postmenopausal women

FOSAMAX has been evaluated for safety in clinical studies in approximately 5000 postmenopausal patients. In two three-year, placebo controlled, double blind multicentre studies, discontinuation of therapy due to any clinical adverse experience occurred in 4.1% of 196 patients treated with FOSAMAX 10 mg/day and 6.0% of 397 patients treated with placebo. Adverse experiences reported by the investigators as possibly, probably or definitely drug related in ≥1% of patients treated with either FOSAMAX 10 mg/day or placebo are presented in the following table:

### Drug Related Adverse Experiences Reported in ≥1% of Patients

<table>
<thead>
<tr>
<th></th>
<th>FOSAMAX 10 mg/day</th>
<th>PLACEBO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% (n=196)</td>
<td>% (n=397)</td>
</tr>
<tr>
<td><strong>Gastrointestinal</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>abdominal pain</td>
<td>6.6</td>
<td>4.8</td>
</tr>
<tr>
<td>nausea</td>
<td>3.6</td>
<td>4.0</td>
</tr>
<tr>
<td>dyspepsia</td>
<td>3.6</td>
<td>3.5</td>
</tr>
<tr>
<td>diarrhoea</td>
<td>3.1</td>
<td>1.8</td>
</tr>
<tr>
<td>constipation</td>
<td>3.1</td>
<td>1.8</td>
</tr>
<tr>
<td>flatulence</td>
<td>2.6</td>
<td>0.5</td>
</tr>
<tr>
<td>acid regurgitation</td>
<td>2.0</td>
<td>4.3</td>
</tr>
<tr>
<td>oesophageal ulcer</td>
<td>1.5</td>
<td>0.0</td>
</tr>
<tr>
<td>vomiting</td>
<td>1.0</td>
<td>1.5</td>
</tr>
<tr>
<td>dysphagia</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>abdominal distension</td>
<td>1.0</td>
<td>0.8</td>
</tr>
<tr>
<td>gastritis</td>
<td>0.5</td>
<td>1.3</td>
</tr>
<tr>
<td><strong>Musculoskeletal</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>musculoskeletal (bone,</td>
<td>4.1</td>
<td>2.5</td>
</tr>
<tr>
<td>muscle or joint) pain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>muscle cramp</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td><strong>Nervous System/Psychiatric</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>headache</td>
<td>2.6</td>
<td>1.5</td>
</tr>
<tr>
<td>dizziness</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td><strong>Special Senses</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>taste perversion</td>
<td>0.5</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Rarely, rash and erythema have occurred.
In the two-year extension (treatment years 4 and 5) of the above studies, the overall safety profile of FOSAMAX 10 mg/day was similar to that observed during the three-year placebo-controlled period. Additionally, the proportion of patients who discontinued FOSAMAX 10 mg/day due to any clinical adverse experience was similar to that during the first three years of the study.

In the Fracture Intervention Trial, discontinuation of therapy due to any clinical adverse experience occurred in 9.1% of 3236 patients treated with FOSAMAX 5 mg/day for 2 years and 10 mg/day for either one or two additional years and 10.1% of 3223 patients treated with placebo. Discontinuations due to upper gastrointestinal adverse experiences were: FOSAMAX, 3.2%; placebo, 2.7%. The overall adverse experience profile was similar to that seen in other studies with FOSAMAX 5 or 10 mg/day.

In a one-year, double-blind, multicentre study, the overall safety and tolerability profiles of FOSAMAX once weekly 70 mg (n = 519) and FOSAMAX 10 mg daily (n = 370) were similar. Adverse experiences reported by the investigators as possibly, probably or definitely drug related in ≥1% of patients treated with either patient group are presented in the following table:

<table>
<thead>
<tr>
<th>Drug Related Adverse Experiences Reported in ≥1% of Patients</th>
<th>FOSAMAX once weekly 70 mg % (n = 519)</th>
<th>FOSAMAX 10 mg/day % (n = 370)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastrointestinal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>3.7</td>
<td>3.0</td>
</tr>
<tr>
<td>Dyspepsia</td>
<td>2.7</td>
<td>2.2</td>
</tr>
<tr>
<td>Acid regurgitation</td>
<td>1.9</td>
<td>2.4</td>
</tr>
<tr>
<td>Nausea</td>
<td>1.9</td>
<td>2.4</td>
</tr>
<tr>
<td>Abdominal distension</td>
<td>1.0</td>
<td>1.4</td>
</tr>
<tr>
<td>Constipation</td>
<td>0.8</td>
<td>1.6</td>
</tr>
<tr>
<td>Flatulence</td>
<td>0.4</td>
<td>1.6</td>
</tr>
<tr>
<td>Gastritis</td>
<td>0.2</td>
<td>1.1</td>
</tr>
<tr>
<td>Gastric ulcer</td>
<td>0.0</td>
<td>1.1</td>
</tr>
<tr>
<td>Musculoskeletal (bone, muscle or joint) pain</td>
<td>2.9</td>
<td>3.2</td>
</tr>
<tr>
<td>Muscle cramp</td>
<td>0.2</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Concomitant use with oestrogen/hormone replacement therapy
In two studies (of one and two years’ duration) of postmenopausal osteoporotic women (total: n=853), the safety and tolerability profile of combined treatment with FOSAMAX 10 mg once daily and oestrogen ± progestin (n=354) was consistent with those of the individual treatments.
Men
In a two year, placebo-controlled, double-blind, multicentre study, the safety profile of FOSAMAX 10 mg daily in 146 men was generally similar to that seen in postmenopausal women.

Other studies in men and women
In a ten-week endoscopy study in men and women (n = 277; mean age 55 years) no difference was seen in upper gastrointestinal tract lesions between FOSAMAX once weekly 70 mg and placebo.

In an additional one-year study in men and women (n = 335; mean age 50 years) the overall safety and tolerability profiles of FOSAMAX once weekly 70 mg were similar to that of placebo and no difference was seen between men and women.

Prevention of osteoporosis
The safety of FOSAMAX in postmenopausal women 40-60 years of age has been evaluated in three double-blind, placebo-controlled studies involving over 1,400 patients randomised to receive FOSAMAX for either two or three years. In these studies, the safety and tolerability profile of FOSAMAX 5 mg/day (n=642) was similar to that of placebo (n=648). The only adverse experience reported by the investigators as possibly, probably, or definitely drug related in ≥1% of patients treated with FOSAMAX 5 mg/day and at a greater incidence than placebo was dyspepsia (FOSAMAX, 1.9% vs. placebo, 1.7%).

Treatment and prevention of glucocorticoid - induced osteoporosis.
In two, one-year, placebo-controlled, double-blind, multicentre studies in patients receiving glucocorticoid treatment, the overall safety and tolerability profiles of FOSAMAX 5 and 10 mg/day were generally similar to that of placebo. Adverse experiences reported by the investigators as possibly, probably or definitely drug related in ≥1% of patients treated with either FOSAMAX 5 mg/day, 10 mg/day or placebo are presented in the following table:

<table>
<thead>
<tr>
<th>Drug Related Adverse Experiences Reported in ≥ 1% of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Gastrointestinal</td>
</tr>
<tr>
<td>Abdominal pain</td>
</tr>
<tr>
<td>Acid regurgitation</td>
</tr>
<tr>
<td>Constipation</td>
</tr>
<tr>
<td>Melena</td>
</tr>
<tr>
<td>Nausea</td>
</tr>
</tbody>
</table>

Paget's disease of bone
In clinical studies (Paget’s disease and osteoporosis), adverse experiences reported in patients taking FOSAMAX 40 mg/day for 3-12 months were similar to those in postmenopausal women treated with FOSAMAX 10 mg/day. However, there was an apparent increased incidence of upper gastrointestinal adverse experiences in patients taking FOSAMAX 40 mg/day. Isolated cases of oesophagitis and gastritis resulted in discontinuation of treatment.

Additionally, musculoskeletal pain (bone, muscle or joint), which has been described in patients with Paget’s disease treated with other bisphosphonates, was reported by the investigators as possibly, probably or definitely drug related in approximately 6% of patients treated with FOSAMAX 40 mg/day
versus approximately 1% of patients treated with placebo, but rarely resulted in discontinuation of therapy.

**FOSAMAX PLUS**

In a 15-week, double-blind, multinational study in osteoporotic postmenopausal women (n=682) and men (n=35), the safety profile of once weekly alendronate 70 mg /colecalciferol 70 µg was similar to that of FOSAMAX once weekly 70 mg. In the 24-week double-blind extension study in women (n=619) and men (n=33), the safety profile of alendronate 70 mg/colecalciferol 70 µg (vitamin D₃ 2800 IU) administered with an additional colecalciferol 70 µg for a total of 140 µg colecalciferol (5600 IU vitamin D₃) was similar to that of alendronate 70 mg/colecalciferol 70 µg (2800 IU vitamin D₃). The primary endpoint was the proportion of patients who developed hypercalciuria at Week 39, with 4.2% noted in the colecalciferol 140 µg group and 2.8% in the colecalciferol 70 µg group, which was not statistically significant. Overall, the safety profile of alendronate 70 mg/colecalciferol 70 µg administered with 70 µg additional colecalciferol for a total of 140 µg colecalciferol was similar to that of alendronate/colecalciferol 70 µg.

**FOSAMAX/FOSAMAX PLUS (including the FOSAMAX PLUS component of FOSAMAX PLUS D-Cal)**

**Post-marketing Experience**

The following adverse reactions have been reported in post-marketing use with alendronate:

**Body as a Whole:** hypersensitivity reactions including urticaria and rarely angioedema. Transient symptoms as in an acute-phase response (myalgia, malaise, asthenia and rarely, fever) have been reported with alendronate, typically in association with initiation of treatment. Rarely, symptomatic hypocalcaemia has occurred, generally in association with predisposing conditions. Rarely, peripheral oedema.

**Gastrointestinal:** nausea, vomiting, oesophagitis, oesophageal erosions, oesophageal ulcers, rarely oesophageal stricture or perforation, and oropharyngeal ulceration and/or stomatitis; rarely, gastric or duodenal ulcers, some severe and with complications (see PRECAUTIONS and DOSAGE AND ADMINISTRATION). Localised osteonecrosis of the jaw, generally associated with tooth extraction and/or local infection (including osteomyelitis), often with delayed healing, has been reported rarely.

**Musculoskeletal:** bone, joint, and/or muscle pain, rarely severe and/or incapacitating (see PRECAUTIONS); joint swelling, atypical stress fracture (see PRECAUTIONS).

**Nervous System:** dizziness, vertigo, dysgeusia.

**Skin:** rash (occasionally with photosensitivity), pruritus, alopecia, rarely severe skin reactions, including Stevens-Johnson syndrome and toxic epidermal necrolysis.

**Special senses:** rarely uveitis; scleritis or episcleritis.

**BoneCal component of FOSAMAX PLUS D-Cal**

The following adverse reactions have been described with calcium carbonate:

- Constipation, flatulence, nausea, abdominal pain, hypercalcaemia, hypercalciuria, nephrolithiasis.
**DOSEAGE AND ADMINISTRATION**

FOSAMAX and FOSAMAX PLUS brands (70 mg/70 μg or 70 mg/140 μg) as well as the FOSAMAX PLUS component of FOSAMAX PLUS D-Cal must be taken at least 30 minutes before the first food, beverage, or medication of the day with plain water only. Other beverages (including mineral water), food and some medications are likely to reduce the absorption of alendronate (see DRUG INTERACTIONS).

FOSAMAX and FOSAMAX PLUS brands (70 mg/70 μg or 70 mg/140 μg) as well as the FOSAMAX PLUS component of FOSAMAX PLUS D-Cal should only be taken upon arising for the day. To facilitate delivery to the stomach and thus reduce the potential for oesophageal irritation, FOSAMAX tablets and FOSAMAX PLUS brands (70 mg/70 μg or 70 mg/140 μg) tablets should only be swallowed with a full glass of water.

Patients should not lie down for at least 30 minutes and until after their first food of the day. FOSAMAX and FOSAMAX PLUS brands (70 mg/70 μg or 70 mg/140 μg) as well as the FOSAMAX PLUS component of FOSAMAX PLUS D-Cal should not be taken at bedtime or before arising for the day. Failure to follow these instructions may increase the risk of oesophageal adverse experiences (see PRECAUTIONS).

**SEVERE OESOPHAGEAL ULCERATION HAS BEEN REPORTED IN PATIENTS TAKING ALENDRONATE. SEE PRECAUTIONS.** PATIENTS SHOULD BE INSTRUCTED THAT IF THEY DEVELOP SYMPTOMS OF OESOPHAGEAL DISEASE (SUCH AS DIFFICULTY OR PAIN UPON SWALLOWING, RETROSTERNAL PAIN OR NEW OR WORSENING HEARTBURN) THEY SHOULD STOP TAKING FOSAMAX, FOSAMAX PLUS (70 mg/70 μg or 70 mg/140 μg) OR THE FOSAMAX PLUS COMPONENT OF FOSAMAX PLUS D-CAL AND CONSULT THEIR PHYSICIAN.

In clinical trials, FOSAMAX was administered with appropriate calcium and vitamin D supplementation. The use of vitamin D as the sole treatment of osteoporosis has not been established.

Patients should receive supplemental calcium and/or vitamin D, if intake is inadequate (see PRECAUTIONS). Each tablet of BoneCal in FOSAMAX PLUS D-Cal provides 500mg elemental calcium.

Physicians should consider the vitamin D intake from vitamins and dietary supplements. FOSAMAX PLUS (70mg/70μg) provides 2800 IU (70 micrograms) of vitamin D in a single once weekly dose, which is equivalent to seven daily doses of 400 IU (10 micrograms). FOSAMAX PLUS (70 mg/140 μg) provides 140 μg colecalciferol (5600 IU of vitamin D₃) in a single once weekly dose, which is equivalent to seven daily doses of 20 μg colecalciferol (800 IU vitamin D₃). Additional supplements should not be taken at the same time of day as FOSAMAX, FOSAMAX PLUS (70 mg/70 μg or 70 mg/140 μg) or the FOSAMAX PLUS component of FOSAMAX PLUS D-Cal (see above).

No dosage adjustment is necessary for the elderly or for patients with mild-to-moderate renal insufficiency (creatinine clearance 35 to 60 mL/min). FOSAMAX, FOSAMAX PLUS (70 mg/70 μg or 70 mg/140 μg) and FOSAMAX PLUS D-Cal are not recommended for patients with more severe renal insufficiency (creatinine clearance < 35 mL/min).

Although no specific studies have been conducted on the effects of switching patients on another therapy for osteoporosis to FOSAMAX or FOSAMAX PLUS (70 mg/70 μg or 70 mg/140 μg), or on another therapy for Paget’s disease to FOSAMAX, there are no known or theoretical safety concerns related to
FOSAMAX or FOSAMAX PLUS (70 mg/70 μg or 70 mg/140 μg) in patients who previously received any other antiosteoporotic or antipagetic therapy.

**FOSAMAX**  
_Treatment of osteoporosis_  
The recommended dosage is:  
- one 70 mg tablet of FOSAMAX once weekly  
  or  
- one 10 mg tablet of FOSAMAX once daily  

_Prevention of osteoporosis in postmenopausal women_  
The recommended dosage is one 5 mg tablet of FOSAMAX once a day  

**Treatment and prevention of glucocorticoid - induced osteoporosis**  
In selected patients, the recommended dosage is one 5 mg tablet of FOSAMAX once a day, except for postmenopausal women not receiving oestrogen, for whom the recommended dosage is one 10 mg tablet of FOSAMAX once a day (see Clinical Trials, Glucocorticoid - Induced Osteoporosis).

**Paget’s disease of bone**  
The recommended treatment regimen is one 40 mg tablet of FOSAMAX once a day for up to six months.

**Retreatment of Paget’s disease**  
In clinical studies, during the twelve months following therapy, relapses occurred in only 9% (3 out of 32) of patients who responded to treatment with FOSAMAX. Specific retreatment data with FOSAMAX are not available, although responses to FOSAMAX were similar in patients who had received prior bisphosphonate therapy and those who had not. Retreatment with FOSAMAX may be considered, following a six month post-treatment evaluation period, in patients who have relapsed based on increases in serum alkaline phosphatase. Retreatment may also be considered in those who failed to normalise their serum alkaline phosphatase.

**FOSAMAX PLUS** brands (70 mg/70 μg or 70 mg/140 μg)  
_Treatment of osteoporosis_ in patients where vitamin D supplementation is recommended  
The recommended dose is one tablet of FOSAMAX PLUS (70 mg/70 μg or 70 mg/140 μg) once weekly.

**FOSAMAX PLUS D-Cal**  
_Treatment of osteoporosis_ in patients where vitamin D and calcium supplementation is recommended.  
The recommended dose is one tablet of FOSAMAX PLUS 70 mg/140 μg taken once weekly. For the next six days, patients should take one or two BoneCal tablets daily depending on their need for calcium supplementation. This 7 day cycle should be repeated each week. With this regimen FOSAMAX PLUS and BoneCal are not taken on the same day.
The FOSAMAX PLUS component should always be taken on the same day each week, in accordance with the directions as described above. The BoneCal component should commence on the day after the FOSAMAX PLUS tablet is taken, with one or two tablets taken each day with food for the next 6 days. The FOSAMAX PLUS and BoneCal tablets should never be taken at the same time.

OVERDOSAGE

Alendronate sodium
No specific information is available on the treatment of overdosage with alendronate. Hypocalcaemia, hypophosphataemia and upper gastrointestinal adverse events, such as upset stomach, heartburn, oesophagitis, gastritis, or ulcer, may result from oral overdosage. Administration of milk or antacids, to bind alendronate, should be considered.

Colecalciferol
Vitamin D toxicity has not been documented during chronic therapy in generally healthy adults at a dose less than 10,000 IU/day. In a clinical study of healthy adults, a 4000 IU daily dose of vitamin D3 for up to five months was not associated with hypercalciuria or hypercalcemia.

Calcium carbonate
Adverse effects of overdosage with calcium carbonate is unlikely due to limited intestinal absorption. However, chronic excessive dosing can lead to hypercalcaemia or hypercalciuria.

Contact the Poisons Information Centre (telephone 13 11 26) for advice regarding management of overdose.

PRESENTATION AND STORAGE CONDITIONS

FOSAMAX® 5 mg, white round tablet, one side MSD 925 other side outline of a bone image. Supplied in blister packs of 8* and 30* tablets.

FOSAMAX® 10 mg, white to off-white, polished oval tablet (one side plain, the other side engraved 936). Supplied in blister packs of 8* and 30 tablets.

FOSAMAX® 40 mg, white triangular shaped tablet, one side MSD 212 other side FOSAMAX. Supplied in blister packs of 8** and 30 tablets.

FOSAMAX® 70 mg, white oval tablet with the outline of a bone image on one side and 31 on the other. Supplied in blister packs of 1*, 2* and 4 tablets.

FOSAMAX PLUS 70 mg/ 70 µg Once Weekly Tablet, providing 2800 IU vitamin D₃. White to off-white, modified capsule-shaped tablet with the outline of a bone image on one side and 710 on the other. Supplied in blister packs of 1** and 4 tablets.

FOSAMAX PLUS 70 mg/ 140 µg, once weekly tablet, providing 5600 IU vitamin D₃. White to off-white, modified rectangle-shaped tablet with “270” on one side and a bone image on the other. Supplied in blister packs of 1** and 4 tablets.

29
FOSAMAX PLUS D-Cal is a combination pack of FOSAMAX PLUS 70mg/140 μg and BoneCal tablets. FOSAMAX PLUS 70 mg/140 μg tablets, providing 5600 IU vitamin D₃, are white to off-white, modified rectangle-shaped tablets with "270" on one side and a bone image on the other. Supplied in blister packs of 4 tablets. BoneCal tablets, providing 500mg elemental calcium, are green film coated capsule shaped tablets. Supplied in a bottle of 48 tablets.

Store below 30°C.

Protect FOSAMAX PLUS (70 mg/ 70 μg and 70 mg/ 140 μg and D-Cal) tablets from moisture and light and store tablets in original blister package until use.

*This pack size not available in Australia.  ** Supplied as starter packs only

NAME AND ADDRESS OF THE SPONSOR
MERCK SHARP & DOHME (AUSTRALIA) PTY LIMITED
54-68 Ferndell Street
SOUTH GRANVILLE  NSW  2142

BoneCal is supplied in Australia by
Vitaco Australia Pty Limited
64 Fennell Street
PORT MELBOURNE 3207 VIC

POISON SCHEDULE OF THE MEDICINE

Prescription only medicine (S4)

DATE OF APPROVAL

This document was approved by the Therapeutic Goods Administration on 15 March 2010.

Date of most recent amendment:  August 10, 2010