MABTHERA®
Rituximab, recombinant for intravenous infusion (CAS registry number: 174722-31-7).

WARNING

Use of MABTHERA may be associated with an increased risk of progressive multifocal leukoencephalopathy (PML), an opportunistic viral infection of the brain that usually leads to death or severe disability. Patients must be monitored for any new or worsening neurological symptoms or signs suggestive of PML. If such symptoms occur, further administration of MABTHERA should be immediately suspended until a diagnosis of PML has been excluded. To establish or exclude a diagnosis of PML evaluation including MRI scan, CSF testing for JC viral DNA and repeat neurological assessments, should be considered. If a diagnosis of PML is confirmed MABTHERA must be permanently discontinued (see PRECAUTIONS).

DESCRIPTION

MABTHERA (rituximab) is a genetically engineered chimeric murine/human monoclonal antibody directed against the CD20 antigen found on the surface of normal and malignant B lymphocytes. The antibody is a glycosylated IgG1 kappa immunoglobulin containing murine light- and heavy-chain variable region sequences (Fab domain) and human constant region sequences (Fc domain). Rituximab is composed of 1,328 amino acids and has an approximate molecular weight of 144 kD. Rituximab has a high binding affinity for the CD20 antigen of 5.2 to 11.0 nM.

The chimeric anti-CD20 antibody is produced by mammalian (Chinese hamster ovary) cell suspension culture in a nutrient medium containing 100 mg/mL of the antibiotic gentamicin. The antibiotic is not detectable in the final product. The anti-CD20 antibody is purified by affinity chromatography and ion exchange, including specific viral inactivation and removal procedures.

MABTHERA is a sterile, clear, colourless, preservative-free, concentrated solution for intravenous infusion. MABTHERA is supplied at a concentration of 10 mg/mL in either 100 mg (10 mL) or 500 mg (50 mL) single-use vials. The product is formulated in 7.35 mg/mL sodium citrate buffer containing 0.7 mg/mL polysorbate 80, 9.0 mg/mL sodium chloride and sterile water for injection. The pH is adjusted to 6.5 with sodium hydroxide or hydrochloric acid.

PHARMACOLOGY

Pharmacodynamics

General: Rituximab binds specifically to the antigen CD20, a transmembrane molecule located on pre-B and mature B lymphocytes. The antigen is expressed on > 95% of all B-cell non-Hodgkin’s lymphomas (NHL). CD20 (human B lymphocyte-restricted differentiation antigen, Bp35) is a hydrophobic transmembrane protein with a molecular weight of approximately 35 kD. This non-glycosylated phosphoprotein is found on both normal and malignant B cells, but not on haematopoietic stem cells, pro-B cells, normal plasma cells or other normal tissues. CD20 regulates (an) early step(s) in the activation process for cell cycle
initiation and differentiation, and possibly functions as a calcium ion channel. CD20 does not internalise upon antibody binding and is not shed from the cell surface. This antigen does not circulate in the plasma. Thus, free antigen does not compete for rituximab binding.

In rheumatoid arthritis (RA) the putative mechanism of action of rituximab involves the depletion of surface antigen-positive B lymphocytes from synovial tissue, with downstream effects potentially including reduced activation of T-cells and the associated release of pro-inflammatory cytokines.

In Vitro Mechanisms of Action: The Fab domain of rituximab binds to the CD20 antigen on B-lymphocytes and the Fc domain recruits immune effector functions to mediate B-cell lysis. Possible mechanisms of cell lysis include complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC). The antibody also induces apoptosis in the DHL-4 human B-cell lymphoma line. Finally, in vitro studies have demonstrated that rituximab sensitises drug-resistant human B-cell lymphoma lines to the cytotoxic effects of some chemotherapeutic agents.

Binding specificity: In human tissue, the expression of the CD20 antigen is highly restricted; rituximab binding to CD20 was found only on lymphoid cells in the thymus, the white pulp of the spleen and a majority of B lymphocytes in peripheral blood and lymph nodes. Little or no non-specific binding was observed.

In Vivo: In cynomolgus monkeys, four or eight weekly doses of 269 mg/m² of rituximab resulted in plasma concentrations of 161 to 386 µg/mL, approximately 24 hours after the first dose. Two weeks after the last dose, rituximab was still detected in the plasma of 3/6 monkeys treated for four weeks and in 4/6 monkeys treated for eight weeks.

B lymphocyte numbers were reduced by 99% or more in comparison with pre-test values in the peripheral blood of all monkeys, approximately 24 hours after the first dose. Two weeks after the last dose, B lymphocyte numbers were still reduced by more than 99% in 3/6 monkeys dosed for four weeks and in 4/6 monkeys dosed for eight weeks, and B lymphocyte numbers were also depleted in the mandibular lymph nodes and femoral bone marrow. A partial recovery of B lymphocyte numbers in the peripheral blood of some monkeys in both dose groups was correlated with the development of antibodies against rituximab.

Human Pharmacodynamics: A marked decline in median peripheral blood B-cell counts was seen beginning after the first dose of MABTHERA.

In patients treated for haematological malignancies, B-cell recovery began at approximately six months following the completion of treatment. Generally B-cell levels returned to normal within twelve months following completion of treatment, although in some patients this may take longer.

In patients with RA, the duration of peripheral B cell depletion was variable. The majority of patients who received further treatment did so prior to full B cell recovery.
Pharmacokinetics

Non-Hodgkin's Lymphoma

Based on a population pharmacokinetic analysis in 298 NHL patients who received single or multiple infusions of rituximab as a single agent or in combination with CHOP therapy, the typical population estimates of nonspecific clearance (CL1), specific clearance (CL2) likely contributed by B cells or tumour burden, and central compartment volume of distribution (V1) were 0.14 L/day, 0.59 L/day, and 2.7 L, respectively. The estimated median terminal elimination half-life of rituximab was 22 days (range, 6.1 to 52 days). Baseline CD19-positive cell counts and size of measurable tumour lesions contributed to some of the variability in CL2 of rituximab in data from 161 patients given 375 mg/m² as an intravenous (IV) infusion for 4 weekly doses. Patients with higher CD19-positive cell counts or tumour lesions had a higher CL2. However, a large component of inter-individual variability remained for CL2 after correction for CD19-positive cell counts and tumour lesion size. V1 varied by body surface area (BSA) and CHOP therapy. The variability in V1 caused by the range in BSA (1.53 to 2.32 m²) and concurrent CHOP therapy was relatively small (27.1% and 19% respectively). Age, gender, race, and WHO (World Health Organisation) performance status had no effect on the pharmacokinetics of rituximab. This analysis suggests that dose adjustment of rituximab with any of the tested covariates is not expected to result in a meaningful reduction in its pharmacokinetic variability.

Rituximab at a dose of 375 mg/m² was administered as an IV infusion at weekly intervals for 4 doses to 203 patients with NHL naive to rituximab. The mean Cmax following the fourth infusion was 486 µg/mL (range 77.5 - 996.6 µg/mL). The peak and trough serum levels of rituximab were inversely correlated with baseline values for the number of circulating CD19-positive B-cells and measures of disease burden. Median steady-state serum levels were higher for responders compared with non-responders. Serum levels were higher in patients with International Working Formulation (IWF) subtypes B, C, and D as compared with those with subtype A.

Rituximab was detectable in the serum of patients 3 – 6 months after completion of last treatment.

Rituximab at a dose of 375 mg/m² was administered as an IV infusion at weekly intervals for 8 doses to 37 patients with NHL. The mean Cmax increased with each successive infusion, spanning from a mean of 243 µg/mL (range, 16 – 582 µg/mL) after the first infusion to 550 µg/mL (range 171 – 1177 µg/mL) after the eighth infusion.

The pharmacokinetic profile of rituximab when administered as 6 infusions of 375 mg/m² in combination with 6 cycles of CHOP chemotherapy was similar to that seen with rituximab alone.

Chronic Lymphocytic Leukaemia (CLL)

Rituximab was administered as an IV infusion at a first-cycle dose of 375 mg/m² increased to 500 mg/m² each cycle for a further 5 doses in combination with fludarabine and cyclophosphamide (FC) in CLL patients. The mean Cmax (N=15) was 408 µg/mL (range, 97 – 764 µg/mL) after the fifth 500 mg/m² infusion.

Rheumatoid Arthritis

Following two intravenous infusions of rituximab at a dose of 1000 mg, two weeks apart, the mean terminal half-life was 20.8 days (range 8.58 to 35.9 days), mean systemic clearance was
0.23 L/day (range 0.091 to 0.67 L/day), and mean steady-state distribution volume was 4.6 L (range 1.7 to 7.51 L). Population pharmacokinetic analysis of the same data gave similar mean values for systemic clearance and half-life, 0.26 L/day and 20.4 days, respectively. Population pharmacokinetic analysis revealed that BSA and gender were the most significant covariates to explain inter-individual variability in pharmacokinetic parameters. After adjusting for BSA, male subjects had a larger volume of distribution and a faster clearance than female subjects. The gender-related pharmacokinetic differences are not considered to be clinically relevant and dose adjustment is not required.

The pharmacokinetics of rituximab were assessed following two IV doses of 500 mg and 1000 mg on days 1 and 15 in four studies. In all these studies, rituximab pharmacokinetics were dose proportional over the limited dose range studied. Mean \(C_{\text{max}} \) for serum rituximab following first infusion ranged from 157 to 171 \(\mu \text{g/mL} \) for 2 x 500 mg dose and ranged from 298 to 341 \(\mu \text{g/mL} \) for 2 x 1000 mg dose. Following second infusion, mean \(C_{\text{max}} \) ranged from 183 to 198 \(\mu \text{g/mL} \) for the 2 x 500 mg dose and ranged from 355 to 404 \(\mu \text{g/mL} \) for the 2 x 1000 mg dose. Mean terminal elimination half-life ranged from 15 to 16.5 days for the 2 x 500 mg dose group and 17 to 21 days for the 2 x 1000 mg dose group. Mean \(C_{\text{max}} \) was 16 to 19% higher following second infusion compared to the first infusion for both doses.

Upon re-treatment with a second course the pharmacokinetics of rituximab were again assessed following two IV doses of 500 mg and 1000 mg. Mean \(C_{\text{max}} \) for serum rituximab following first infusion was 170 to 175 \(\mu \text{g/mL} \) for 2 x 500 mg dose and 317 to 370 \(\mu \text{g/mL} \) for 2 x 1000 mg dose. \(C_{\text{max}} \) following second infusion, was 207 \(\mu \text{g/mL} \) for the 2 x 500 mg dose and ranged from 377 to 386 \(\mu \text{g/mL} \) for the 2 x 1000 mg dose. Mean terminal elimination half-life after the second infusion, following the second course, was 19 days for 2 x 500 mg dose and ranged from 21 to 22 days for the 2 x 1000 mg dose. PK parameters for rituximab were comparable over the two treatment courses.

CLINICAL TRIALS

Non-Hodgkin's Lymphoma

Relapsed/Refractory Low Grade or Follicular non-Hodgkin's Lymphoma

Monotherapy

In the pivotal study, an open label, single arm trial of 166 patients with relapsed or refractory low-grade or follicular B-cell NHL, subjects received 375 mg/m² of MABTHERA as an IV infusion once a week for four weeks (4 doses). The overall response rate (ORR) in the intent-to-treat (ITT) population was 48% (CI 95% 41% – 56%), comprising a 6% complete response (CR) and 42% partial response (PR). The projected median time to progression (TTP) for responding patients was 13.0 months.

In a subgroup analysis, the ORR was significantly higher in patients with IWF B, C, and D histological subtypes as compared to IWF A subtype (58% vs 12%) and in patients with prior autologous bone marrow transplantation (ABMT) compared to those with no prior ABMT (78% vs 43%). Age, sex, lymphoma grade, years since initial diagnosis, presence or absence of bulky disease, normal or high LDH, or presence of extranodal disease did not have a significant effect (Fisher’s exact test) on response to MABTHERA.

ORR was also significantly higher in patients with no bone marrow involvement compared to those with bone marrow involvement (59% vs 40%). This finding was not supported by a
stepwise logistic regression analysis in which the following factors were identified as prognostic factors: histologic type, bcl-2 positivity at baseline, resistance to last chemotherapy and bulky disease.

Re-treatment

In a multicentre, single-arm study, 58 patients with relapsed or refractory low grade or follicular B-cell NHL, who had achieved an objective clinical response to a prior course of MABTHERA, were re-treated with 375 mg/m² of MABTHERA as IV infusion weekly for four doses. Three of the patients had received two courses of MABTHERA before enrolment and thus were given a third course in the study. Two patients were re-treated twice in the study. For the 60 re-treatments on study, the ORR was 38% (CR 10% and PR 28%) with a projected median TTP for responding patients of 17.8 months (range 5.4 – 26.6). This compares favourably with the TTP achieved after the prior course of MABTHERA 12.4 months.

Bulky Disease

In pooled data from three studies, 39 patients with relapsed or refractory, bulky disease (single lesion ≥ 10cm in diameter), low-grade or follicular B-cell NHL received 375 mg/m² of MABTHERA given as an IV infusion once weekly for four doses. The overall response rate (ORR) was 36% (CR 3%, PR 33%) with a median TTP for responding patients of 9.6 months (range 4.5 to 26.8 months).

Clinical Laboratory Findings

Molecular Genetic Markers: Results from the exploratory analysis of the bcl-2 gene rearrangement showed that samples of peripheral blood obtained at baseline were positive for the bcl-2 rearrangement (bcl-2 positive) by nested Polymerase Chain Reaction (PCR) in 70 (42%) of the 166 enrolled patients. Of these 70 patients, 55 patients had a follow-up blood sample at 3 months and more than 60% showed a conversion to negative bcl-2 gene rearrangement.

With regard to bone marrow assessment, of 71 (45%) of the 166 enrolled patients who were bcl-2 positive in marrow at baseline, 22 were assessed for bcl-2 rearrangement at 3 months. Of these, 12 (55%) were bcl-2 negative at three months.

Of 67 patients evaluated for human anti-mouse antibody (HAMA), none were positive. Of 356 patients evaluated for HACA, 1.1% (4 patients) were positive.

Previously Untreated Follicular non-Hodgkin's Lymphoma

Combination with chemotherapy

In an open-label randomised study (M39021), a total of 322 previously untreated Stage III or IV follicular B cell NHL patients were randomised to receive either CVP chemotherapy (cyclophosphamide 750 mg/m², vincristine 1.4 mg/m² up to a maximum of 2 mg on day 1, and prednisolone 40 mg/m²/day on days 1 –5) every 3 weeks for 8 cycles or MABTHERA 375 mg/m² in combination with CVP (R-CVP). MABTHERA was administered on the first day of each treatment cycle. A total of 321 patients (162 R-CVP, 159 CVP) received therapy and were analysed for efficacy.
The median follow-up of patients was 53 months. Addition of MABTHERA to CVP significantly increased time to treatment failure (the primary endpoint), tumour response, progression-free survival (PFS) and overall survival (OS) (Table 1).

Table 1 Summary of key results from study M39021

<table>
<thead>
<tr>
<th></th>
<th>CVP (N=159)</th>
<th>R-CVP (N=162)</th>
<th>Hazard Ratio [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Time to Treatment Failure (months)</td>
<td>6.6</td>
<td>27.0</td>
<td>0.34 [0.26, 0.44]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p<0.0001</td>
</tr>
<tr>
<td>Median Progression-free Survival (months)</td>
<td>14.7</td>
<td>33.6</td>
<td>0.44 [0.33, 0.57]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p<0.001</td>
</tr>
<tr>
<td>Overall Tumour Response1 (%)</td>
<td>57</td>
<td>81</td>
<td>-</td>
</tr>
<tr>
<td>Overall Survival (%)</td>
<td>71</td>
<td>81</td>
<td>0.60 [0.38, 0.95]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p=0.029</td>
</tr>
</tbody>
</table>

1 Tumour response = CR (complete response), CRu (complete response unconfirmed) and PR (partial response)

Results from three other randomised studies using MABTHERA in combination with chemotherapy regimens other than CVP (CHOP, MCP, CHVP/interferon-alfa 2a) have also demonstrated significant improvements in response rates, time dependent parameters as well as in overall survival (Table 2).

Table 2 Summary of key results from three phase III randomised studies evaluating the benefit of MabThera with different chemotherapy regimens in follicular lymphoma

<table>
<thead>
<tr>
<th>Study</th>
<th>Treatment, n</th>
<th>Median follow up, months</th>
<th>ORR, %</th>
<th>CR, %</th>
<th>Outcome1 (months)</th>
<th>OS rates, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLSG’00</td>
<td>CHOP, 205</td>
<td>18</td>
<td>90</td>
<td>17</td>
<td>Median TTF:</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>R-CHOP, 223</td>
<td></td>
<td>96</td>
<td>20</td>
<td>Not reached</td>
<td>p<0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p=0.016</td>
</tr>
<tr>
<td>OSHO-39</td>
<td>MCP, 96</td>
<td>47</td>
<td>75</td>
<td>25</td>
<td>Median PFS:</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>R-MCP, 105</td>
<td></td>
<td>92</td>
<td>50</td>
<td>Not reached</td>
<td>p<0.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p=0.0096</td>
</tr>
<tr>
<td>FL2000</td>
<td>CHVP-IFN, 183</td>
<td>42</td>
<td>85</td>
<td>49</td>
<td>Median EFS:</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>R-CHVP-IFN, 175</td>
<td></td>
<td>94</td>
<td>76</td>
<td>Not reached</td>
<td>p<0.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p=0.029</td>
</tr>
</tbody>
</table>

Abbreviations: ORR – overall response rate; CR – complete response; OS rates – overall survival rates at the time of the analyses; R – MABTHERA; CHOP - cyclophosphamide, doxorubicin, vincristine, prednisone; MCP – mitoxantrone, chlorambucil, prednisolone; CHVP - cyclophosphamide, doxorubicin, etoposide, prednisolone; IFN – interferon-alfa 2a.

Maintenance Therapy

Relapsed/Refractory follicular NHL

In a prospective, open label, international, multicentre, Phase III trial, 465 patients with relapsed/refractory follicular NHL were randomised in a first step to induction therapy with either CHOP (cyclophosphamide, doxorubicin, vincristine, prednisolone; n=231) or
MABTHERA plus CHOP (R-CHOP, n=234), one dose of rituximab combined with each cycle of chemotherapy. The two treatment groups were well balanced with regard to baseline characteristics and disease status. A total of 334 patients achieving a complete or partial remission following induction therapy were randomised in a second step to MABTHERA maintenance therapy (n=167) or observation (n=167). MABTHERA maintenance treatment consisted of a single infusion of MABTHERA at 375 mg/m² body surface area given every 3 months until disease progression or for a maximum period of two years. Patients with hypogammaglobulinaemia (IgG <3g/L) or known HIV infection were excluded from the trial.

The final efficacy analysis included all patients randomised to both parts of the study. After a median observation time of 31 months for patients randomised to the induction phase, R-CHOP significantly improved the outcome of patients with relapsed/refractory follicular NHL when compared to CHOP (see Table 3).

Table 3 Induction phase: overview of efficacy results for CHOP vs R-CHOP (31 months median observation time)

<table>
<thead>
<tr>
<th>Primary Efficacy</th>
<th>CHOP</th>
<th>R-CHOP</th>
<th>p-value</th>
<th>Risk Reduction¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORR²)</td>
<td>74%</td>
<td>87%</td>
<td>0.0003</td>
<td>NA</td>
</tr>
<tr>
<td>CR²)</td>
<td>16%</td>
<td>29%</td>
<td>0.0005</td>
<td>NA</td>
</tr>
<tr>
<td>PR²)</td>
<td>58%</td>
<td>58%</td>
<td>0.9449</td>
<td>NA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Secondary Efficacy</th>
<th>OS (median)</th>
<th>PFS(median)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NR</td>
<td>19.4 mo.</td>
</tr>
<tr>
<td></td>
<td>NR</td>
<td>33.2 mo.</td>
</tr>
<tr>
<td>OS</td>
<td>NR</td>
<td>0.0508</td>
</tr>
<tr>
<td>PFS</td>
<td>NR</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

¹) Estimates were calculated by hazard ratios
²) Last tumour response as assessed by the investigator. The “primary” statistical test for “response” was the trend test of CR versus PR versus non-response (p < 0.0001)

Abbreviations: NA, not available; NR, not reached; mo, months; ORR: overall response rate; CR: complete response; PR: partial response; OS: overall survival; PFS: progression free survival

For patients randomised to the maintenance phase of the trial, the median observation time was 28 months from maintenance randomisation. Maintenance treatment with MABTHERA led to a clinically relevant and statistically significant improvement in the primary endpoint, PFS, (time from maintenance randomisation to relapse, disease progression or death) when compared to observation alone (p< 0.0001 log-rank test). The median PFS was 42.2 months in the MABTHERA maintenance arm compared to 14.3 months in the observation arm. Using a cox regression analysis, the risk of experiencing progressive disease or death was reduced by 61% with MABTHERA maintenance treatment when compared to observation (95% CI; 45%-72%). Kaplan-Meier estimated progression-free rates at 12 months were 78% in the MABTHERA maintenance group vs 57% in the observation group. An analysis of overall survival confirmed the significant benefit of MABTHERA maintenance over observation (p=0.0039 log-rank test). MABTHERA maintenance treatment reduced the risk of death by 56% (95% CI; 22%-75%).

The median time to new anti-lymphoma treatment was significantly longer with MABTHERA maintenance treatment than with observation (38.8 months vs. 20.1 months, p= 0.0001 log-rank test). The risk of starting a new treatment was reduced by 50% (95% CI; 30%-64%). In patients achieving a CR/CRu (complete response unconfirmed) as best response during induction treatment, MABTHERA maintenance treatment significantly prolonged the median disease free survival (DFS) compared to the observation group (53.7 vs 16.5 months, p=0.0003) log-rank test (Table 4). The risk of relapse in complete responders was reduced by 67% (95% CI; 39%-82%).
Table 4 Maintenance phase: overview of efficacy results MABTHERA vs. observation (28 months median observation time)

<table>
<thead>
<tr>
<th>Efficacy Parameter</th>
<th>Kaplan-Meier Estimate of Median Time to Event (Months)</th>
<th>Risk Reduction (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Observation (N=167)</td>
<td>MabThera (N=167)</td>
</tr>
<tr>
<td>Progression-free survival (PFS)</td>
<td>14.3</td>
<td>42.2</td>
</tr>
<tr>
<td>Overall Survival</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Time to new lymphoma treatment</td>
<td>20.1</td>
<td>38.8</td>
</tr>
<tr>
<td>Disease-free survival(^a)</td>
<td>16.5</td>
<td>53.7</td>
</tr>
</tbody>
</table>

Subgroup Analysis

<table>
<thead>
<tr>
<th>Efficacy Parameter</th>
<th>CHOP</th>
<th>R-CHOP</th>
<th>CR</th>
<th>PR</th>
<th>OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFS</td>
<td>11.6</td>
<td>37.5</td>
<td>22.1</td>
<td>51.9</td>
<td>0.0001</td>
</tr>
<tr>
<td>R-CHOP</td>
<td></td>
<td></td>
<td>0.0071</td>
<td></td>
<td>0.0008</td>
</tr>
<tr>
<td>CR</td>
<td>14.3</td>
<td>52.8</td>
<td></td>
<td>0.0001</td>
<td>54% (33-69%)</td>
</tr>
<tr>
<td>PR</td>
<td>14.3</td>
<td>37.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OS</td>
<td>CHOP</td>
<td>NR</td>
<td></td>
<td>0.0348</td>
<td>55% (4-79%)</td>
</tr>
<tr>
<td>R-CHOP</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td>0.0482</td>
<td>56% (-2-81%)</td>
</tr>
</tbody>
</table>

NR: not reached; \(^a\): only applicable to patients achieving a CR

The benefit of MABTHERA maintenance treatment was confirmed in all subgroups analysed, regardless of induction regimen (CHOP or R-CHOP) or quality of response to induction treatment (CR or PR) (Table 5). MABTHERA maintenance treatment significantly prolonged median PFS in patients responding to CHOP induction therapy (median PFS 37.5 months vs 11.6 months, p< 0.0001) as well as in those responding to R-CHOP induction (median PFS 51.9 months vs 22.1 months, p=0.0071). Although analysed subgroups were small, and the median survival had not been reached after an overall median observation period of 47.2 months, a clinically meaningful benefit in terms of overall survival was observed for patients receiving MABTHERA maintenance treatment when compared to observation, in the overall population.

MABTHERA maintenance treatment provided consistent benefit in all subgroups tested [gender (male, female), age (≤ 60 years, > 60 years), stage (III, IV), WHO performance status (0 versus > 0), B symptoms (absent, present), bone marrow involvement (no versus yes), IPI (0-2 versus 3-5), FLIPI score (0-1, versus 2 versus 3-5), number of extra-nodal sites (0-1 versus > 1), number of nodal sites (< 5 versus ≥ 5), number of previous regimens (1 versus 2), best response to prior therapy (CR/PR versus NC/PD), haemoglobin (< 12 g/dL versus ≥ 12 g/dL), β₂-microglobulin (< 3mg/L versus ≥ 3 mg/L), LDH (elevated, not elevated) except for the small subgroup of patients with bulky disease.

Previously untreated follicular NHL

In a prospective, open label, international, multi-centre, Phase III trial 1193 patients with previously untreated advanced follicular lymphoma received induction therapy with R-CHOP (n=881), R-CVP (n=268) or R-FCM (n=44), according to the investigators’ choice. A total of 1078 patients responded to induction therapy, of which 1018 were randomised to
MABTHERA maintenance therapy (n=505) or observation (n=513). The two treatment groups were well balanced with regards to baseline characteristics and disease status. MABTHERA maintenance treatment consisted of a single infusion of MABTHERA at 375 mg/m² body surface area given every 2 months until disease progression or for a maximum period of two years.

After a median observation time of 25 months from randomisation, maintenance therapy with MABTHERA resulted in a clinically relevant and statistically significant improvement in the primary endpoint of investigator assessed progression-free survival (PFS) as compared to no maintenance therapy in patients with previously untreated follicular NHL (Table 5). This improvement in PFS was confirmed by an independent review committee (IRC) (Table 5).

Significant benefit from maintenance treatment with MABTHERA was also seen for the secondary endpoints event-free survival (EFS), time to next anti-lymphoma treatment (TNLT) time to next chemotherapy (TNCT) and overall response rate (ORR) (Table 5).

Table 5 Overview of efficacy results for maintenance MABTHERA vs. observation (25 months median observation time)

<table>
<thead>
<tr>
<th>Efficacy Parameter</th>
<th>Observation (N=513)</th>
<th>MABTHERA (N=505)</th>
<th>Log Rank P value</th>
<th>Risk reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Efficacy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFS (median)</td>
<td>NE</td>
<td>NE</td>
<td><0.0001</td>
<td>50%</td>
</tr>
<tr>
<td>Secondary Efficacy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFS (median)*</td>
<td>30.9 months</td>
<td>37.1 months</td>
<td><0.0001</td>
<td>46%</td>
</tr>
<tr>
<td>EFS (median)</td>
<td>37.8 months</td>
<td>NE</td>
<td>< 0.0001</td>
<td>46%</td>
</tr>
<tr>
<td>OS (median)</td>
<td>NE</td>
<td>NE</td>
<td>0.7246</td>
<td>-</td>
</tr>
<tr>
<td>TNLT (median)</td>
<td>NE</td>
<td>NE</td>
<td>0.0003</td>
<td>39%</td>
</tr>
<tr>
<td>TNCT (median)</td>
<td>NE</td>
<td>NE</td>
<td>0.0011</td>
<td>40%</td>
</tr>
<tr>
<td>ORR**</td>
<td>55.0%</td>
<td>74.0%</td>
<td>< 0.0001</td>
<td>[Odds ratio = 2.33]</td>
</tr>
<tr>
<td>Complete Response</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CR/CRu) rate**</td>
<td>47.7%</td>
<td>66.8%</td>
<td>< 0.0001</td>
<td>[Odds ratio = 2.21]</td>
</tr>
</tbody>
</table>

*As assessed by an independent review committee (IRC)

**At end of maintenance/observation; PFS: progression-free survival; EFS: event-free survival; OS: overall survival; TNLT: time to next anti-lymphoma treatment; TNCT: Time to next chemotherapy treatment

NE: Not estimable at time of clinical cut-off

MABTHERA maintenance treatment provided consistent benefit in all subgroups tested: gender (male, female), age (<60 years, >= 60 years), FLIPI score (1, 2 or 3), induction therapy (R-CHOP, R-CVP or R-FCM) and regardless of the quality of response to induction treatment (CR or PR).

There are currently no data to support superior efficacy for maintenance treatment given every 2 months over maintenance therapy given every 3 months, in either the relapsed/refractory or previously untreated setting.

Diffuse Large B-cell non-Hodgkin’s Lymphoma

In a randomised, Phase III, open-label trial, a total of 399 previously untreated elderly ambulatory patients (age 60 to 80 years, ECOG performance status 0-2) with moderate to
advanced (Ann Arbor stage II-IV) diffuse large B-cell lymphoma received standard CHOP chemotherapy (cyclophosphamide 750 mg/m², doxorubicin 50 mg/m², vincristine 1.4 mg/m² up to a maximum of 2 mg on day 1, and prednisone 40 mg/m²/day on days 1-5) every 3 weeks for eight cycles, or MABTHERA 375 mg/m² administered as an intravenous infusion plus CHOP (R-CHOP). MABTHERA was administered on the first day of the treatment cycle.

The final efficacy analysis included all randomised patients (197 CHOP, 202 R-CHOP), and had a median follow-up duration of approximately 31 months. The two treatment groups were well balanced in baseline characteristics and disease status. The final analysis confirmed that R-CHOP significantly increased the duration of event-free survival (the primary efficacy parameter, where events were death, relapse or progression of lymphoma, or institution of a new anti-lymphoma treatment) (p=0.0001). Kaplan Meier estimates of the median duration of event-free survival were 35 months in the R-CHOP arm compared to 13 months in the CHOP arm, representing a risk reduction of 41%. At 24 months, estimates for overall survival were 68.2% in the R-CHOP arm compared to 57.4% in the CHOP arm. A subsequent analysis of the duration of overall survival, carried out with a median follow-up duration of 38 months, confirmed the benefit of R-CHOP over CHOP treatment (p=0.0094), representing a risk reduction of 33%.

The analysis of all secondary parameters (response rates, progression-free survival, disease-free survival, duration of response) verified the treatment effect of R-CHOP compared to CHOP. The complete response rate after cycle 8 was 76.2% in the R-CHOP group and 62.4% in the CHOP group (p=0.0028). The risk of disease progression was reduced by 46% and the risk of relapse by 51%.

In all patient subgroups (gender, age, age-adjusted IPI, Ann Arbor stage, ECOG, Beta 2 Microglobulin, LDH, Albumin, B-symptoms, Bulky disease, extranodal sites, bone marrow involvement), the risk ratios for event-free survival and overall survival (R-CHOP compared with CHOP) were less than 0.83 and 0.95 respectively, although the benefit with R-CHOP was not always statistically significant.

A subsequent analysis of the duration of overall survival, carried out with a median follow-up duration of 60 months, confirmed the benefit of R-CHOP over CHOP treatment (p=0.0071), representing a risk reduction of 32%.

Chronic Lymphocytic Leukaemia (CLL)

In two open-label randomised studies, a total of 817 previously untreated patients and 552 patients with relapsed/refractory CLL were randomised to receive either fludarabine and cyclophosphamide (FC) chemotherapy (fludarabine 25 mg/m², cyclophosphamide 250 mg/m², days 1-3) every 4 weeks for 6 cycles or MABTHERA in combination with FC (R-FC). MABTHERA was administered at a dosage of 375 mg/m² during the first cycle one day prior to chemotherapy and at a dosage of 500 mg/m² on day 1 of cycles 2-6. A total of 810 patients (403 R-FC, 407 FC) from the first-line study (Table 6) and 552 patients (276 R-FC, 276 FC) for the relapsed/refractory study (Table 7) were analysed for efficacy.

In the first-line study, the primary endpoint of progression-free survival (PFS) was a median of 40 months in the R-FC group and a median of 32 months in the FC group (p<0.0001, log-rank test). The analysis of overall survival demonstrated improved survival in favour of the R-FC arm (p=0.0427), however longer follow-up is needed to confirm this observation. The
benefit in terms of PFS was consistently observed in most patient subgroups analysed according to disease risk at baseline.

Table 6 First-line treatment of Chronic Lymphocytic Leukaemia - overview of efficacy results for MABTHERA plus FC vs. FC alone (20.7 months median observation time)

<table>
<thead>
<tr>
<th>Efficacy Parameter</th>
<th>Kaplan-Meier Estimate of Median Time to Event (Months)</th>
<th>Hazard Ratio R-FC vs FC [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FC (N=407)</td>
<td>R-FC (N=403)</td>
</tr>
<tr>
<td>Progression-free survival</td>
<td>32.2</td>
<td>39.8</td>
</tr>
<tr>
<td>Overall Survival</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Response rate (CR, nPR, or PR)</td>
<td>72.7%</td>
<td>86.1%</td>
</tr>
<tr>
<td>CR rates</td>
<td>17.2%</td>
<td>36.0%</td>
</tr>
</tbody>
</table>

Response rate and CR rates analysed using Chi-squared Test.
Abbreviations: CR: complete response; nPR: nodular partial response; PR: partial response; NA: not available; NR: not reached
Standard definitions and assessments for response were used in accordance with the National Cancer Institute-sponsored Working Group guidelines for CLL.

In a case series of 30 previously untreated patients with CLL, an overall response rate of 97% was achieved with MABTHERA in combination with fludarabine, cyclophosphamide and mitoxantrone (FCM). Survival was not reported. In another case series of 64 previously untreated patients with CLL, an overall response rate of 91% and a median progression-free survival of 32.6 months were achieved with MABTHERA in combination with pentostatin and cyclophosphamide (PC).

In the relapsed/refractory study, the median PFS (primary endpoint) was 30.6 months in the R-FC group and 20.6 months in the FC group (p=0.0002, log-rank test). The benefit in terms of PFS was observed in almost all patient subgroups analysed according to disease risk at baseline. A non-significant trend towards improvement in overall survival was reported in the R-FC arm compared to the FC arm.
Table 7 Treatment of relapsed/refractory Chronic Lymphocytic Leukaemia – overview of efficacy results for MABTHERA plus FC vs. FC alone (25.3 months median observation time)

<table>
<thead>
<tr>
<th>Efficacy Parameter</th>
<th>Kaplan-Meier Estimate of Median Time to Event (Months)</th>
<th>Hazard Ratio R-FC vs FC [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FC (N=276)</td>
<td>R-FC (N=276)</td>
</tr>
<tr>
<td>Progression-free survival</td>
<td>20.6</td>
<td>30.6</td>
</tr>
<tr>
<td>Overall Survival</td>
<td>51.9</td>
<td>NR</td>
</tr>
<tr>
<td>Response rate (CR, nPR, or PR)</td>
<td>58.0%</td>
<td>69.9%</td>
</tr>
<tr>
<td>CR rates</td>
<td>13.0%</td>
<td>24.3%</td>
</tr>
</tbody>
</table>

Response rate and CR rates analysed using Chi-squared Test.
Abbreviations: CR: complete response; nPR: nodular partial response; PR: partial response; NA: not available; NR: not reached
Standard definitions and assessments for response were used in accordance with the National Cancer Institute-sponsored Working Group guidelines for CLL.

In relapsed/refractory CLL patients, response rates of 70% or greater have been reported in small studies of the following chemotherapy regimens with MABTHERA: FCM (fludarabine, cyclophosphamide, mitoxantrone), PC (pentostatin, cyclophosphamide), PCM (pentostatin, cyclophosphamide, mitoxantrone), CHOP (cyclophosphamide, doxorubicin, vincristine, prednisolone), bendamustine and cladribine.

Rheumatoid Arthritis

The efficacy and safety of MABTHERA in alleviating the symptoms and signs of RA was demonstrated in three randomised, controlled, double-blind, multicentre studies.

Study 1, WA17042 (REFLEX), was a double blind comparative study which included 517 patients that had experienced an inadequate response or intolerance to one or more TNF inhibitor therapies. Eligible patients had severe active RA, diagnosed according to the criteria of the American College of Rheumatology (ACR). The study population was comprised of adult patients aged ≥ 18 years with RA for at least 6 months who had experienced an inadequate response to previous treatment with an anti-TNF therapy. The primary endpoint was the percent of patients who achieved an ACR20 response at week 24. Patients received 2 x 1000 mg IV infusions of MABTHERA, each following an IV infusion of 100 mg methylprednisone and separated by an interval of 15 days. All patients received concomitant oral methotrexate (MTX) (10-25 mg/week) and 60 mg oral prednisone on days 2-7 and 30 mg on days 8-14 following the first infusion. Patients were followed beyond week 24 for long term endpoints, including radiographic assessment at 56 weeks. During this time patients could receive further courses of MABTHERA under an open label extension study protocol (see Radiographic Response).

Study 2, WA17043 (DANCER), was a randomised, double-blind, double-dummy, controlled, 3 x 3 multifactorial study which compared two different dose levels of MABTHERA (2 x 1000 mg or 2 x 500 mg) given with or without one of two corticosteroid infusion regimens in combination with weekly MTX. All patients received concomitant oral methotrexate. The primary endpoint was the proportion of RF (Rheumatoid Factor) positive patients with an
ACR20 response at week 24. The study population was comprised of adult patients aged ≥ 18 years with RA who had previously failed 1-5 DMARDs and who currently had an inadequate response to MTX.

Study 3 was a double-blind, double-dummy, controlled study evaluating MABTHERA monotherapy, and MABTHERA in combination with either cyclophosphamide or MTX in patients with active RA who had not responded to one or more prior DMARDs. The primary endpoint was the proportion of patients with an ACR50 response at week 24. The study population was comprised of adult patients aged ≥ 21 years with RA who had failed 1-5 DMARDs, were RF seropositive at screening, and who currently had a partial clinical response to MTX monotherapy.

An ACR20 response was defined as at least a 20% improvement, compared to baseline, in both swollen and tender joint counts (SJC and TJC), as well as in 3 out of 5 additional parameters: physician’s global assessment of disease activity, patient’s global assessment of disease activity, patient’s assessment of pain, Health Assessment Questionnaire Disability Index (HAQ-DI) and C-reactive protein (CRP).

The comparator drug in all three studies was weekly MTX (10-25 mg weekly).

Disease Activity Outcomes

In all three studies, MABTHERA 2 x 1000 mg + MTX significantly increased the proportion of patients achieving at least a 20% improvement in ACR score compared with patients treated with MTX alone (Table 8). The treatment effect was similar in patients independent of age, gender, body surface area, race, number of prior treatments or disease status.

Clinically and statistically significant improvement was also noted on all individual components of the ACR response (tender and swollen joint counts, patient and physician global assessment, disability index scores (HAQ), pain assessment and CRP (mg/dL).

<table>
<thead>
<tr>
<th>Study 1 REFL Ex</th>
<th>ACR Response</th>
<th>Placebo+MTX</th>
<th>MABTHERA +MTX</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR20</td>
<td>36 (18%)</td>
<td>153 (51%)³</td>
<td></td>
</tr>
<tr>
<td>ACR50</td>
<td>11 (5%)</td>
<td>80 (27%)¹</td>
<td></td>
</tr>
<tr>
<td>ACR70</td>
<td>3 (1%)</td>
<td>37 (12%)¹</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study 2 DANCER</th>
<th>ACR Response</th>
<th>Placebo+MTX</th>
<th>MABTHERA +MTX</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR20</td>
<td>45 (31%)</td>
<td>96 (52%)²</td>
<td></td>
</tr>
<tr>
<td>ACR50</td>
<td>19 (13%)</td>
<td>61 (33%)²</td>
<td></td>
</tr>
<tr>
<td>ACR70</td>
<td>6 (4%)</td>
<td>28 (15%)²</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study 3</th>
<th>ACR Response</th>
<th>Placebo+MTX</th>
<th>MABTHERA +MTX</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR20</td>
<td>15 (38%)</td>
<td>28 (70%)³</td>
<td></td>
</tr>
<tr>
<td>ACR50</td>
<td>5 (13%)</td>
<td>17 (43%)³</td>
<td></td>
</tr>
<tr>
<td>ACR70</td>
<td>2 (5%)</td>
<td>9 (23%)³</td>
<td></td>
</tr>
</tbody>
</table>

¹ p ≤ 0.0001; ² p ≤ 0.001; ³ p <0.05

MABTHERA + MTX treated patients had a significantly greater reduction in disease activity score (DAS28) than patients treated with MTX alone. A good to moderate EULAR response
was achieved by significantly more MABTHERA + MTX treated patients compared to patients treated with MTX alone (Table 9).

Table 9 Cross-Study Comparison of DAS and EULAR Responses at Week 24 (ITT Population)

<table>
<thead>
<tr>
<th>Study</th>
<th>Placebo+MTX</th>
<th>MABTHERA +MTX 2 x 1g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(N=201)</td>
<td>(N=298)</td>
</tr>
<tr>
<td>Change in DAS28 [Mean (SD)]</td>
<td>-0.4 (1.2)</td>
<td>-1.9 (1.6)*</td>
</tr>
<tr>
<td>EULAR Response (%)</td>
<td>None: 78%</td>
<td>35%</td>
</tr>
<tr>
<td></td>
<td>Moderate: 20%</td>
<td>50%*</td>
</tr>
<tr>
<td></td>
<td>Good: 2%</td>
<td>15%</td>
</tr>
<tr>
<td>Mean change in DAS28 [SD]</td>
<td>-0.8 (1.4)</td>
<td>-2.0 (1.6)</td>
</tr>
<tr>
<td>EULAR response</td>
<td>None: 61%</td>
<td>37%</td>
</tr>
<tr>
<td></td>
<td>Moderate: 35%</td>
<td>40%</td>
</tr>
<tr>
<td></td>
<td>Good: 4%</td>
<td>23%</td>
</tr>
<tr>
<td>Mean change in DAS [SD]</td>
<td>-1.3 (1.2)</td>
<td>-2.6 (1.3)</td>
</tr>
<tr>
<td>EULAR response</td>
<td>None: 50%</td>
<td>18%</td>
</tr>
<tr>
<td></td>
<td>Moderate: 45%</td>
<td>63%</td>
</tr>
<tr>
<td></td>
<td>Good: 5%</td>
<td>20%</td>
</tr>
</tbody>
</table>

* p value <0.0001. p values not calculated for studies 2 and 3.

Radiographic Response

In Study WA17042 (REFLEX), structural joint damage was assessed radiographically and expressed as changes in Genant-modified Total Sharp Score (TSS) and its components, the erosion score (ES) and the joint space narrowing (JSN) score. MABTHERA + MTX slowed the progression of structural damage compared to placebo + MTX after 1 year (Table 10). 70% of patients initially randomised to MABTHERA + MTX and 72% of patients initially randomised to placebo + MTX were evaluated radiographically at year 2. Progression of structural damage in MABTHERA + MTX patients was further reduced in the second year of treatment (Table 10).
Table 10 Mean radiographic change from baseline to 104 weeks

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MABTHERA + MTX<sup>b</sup> (2 x 1000 mg)</th>
<th>Placebo + MTX<sup>c</sup></th>
<th>Treatment Difference (Placebo – MABTHERA)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change during first year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSS</td>
<td>0.66</td>
<td>1.78</td>
<td>1.12</td>
<td>(0.48, 1.76)</td>
</tr>
<tr>
<td>ES</td>
<td>0.44</td>
<td>1.19</td>
<td>0.75</td>
<td>(0.32, 1.18)</td>
</tr>
<tr>
<td>JSN score</td>
<td>0.22</td>
<td>0.59</td>
<td>0.37</td>
<td>(0.11, 0.63)</td>
</tr>
<tr>
<td>Change during second year<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSS</td>
<td>0.48</td>
<td>1.04</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ES</td>
<td>0.28</td>
<td>0.62</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>JSN score</td>
<td>0.20</td>
<td>0.42</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

^a Based on radiographic scoring following 104 weeks of observation

^b Patients received up to 2 years of treatment with MABTHERA + MTX

^c Patients receiving placebo + MTX could receive retreatment with MABTHERA + MTX from week 16 onwards

Following 2 years of treatment with MABTHERA + MTX, 57% of patients had no progression of structural damage. During the first year, 60% of MABTHERA + MTX treated patients had no progression, defined as a change in TSS of zero or less compared to baseline, compared to 46% of placebo + MTX treated patients. In their second year of treatment with MABTHERA + MTX, more patients had no progression than in the first year (68% vs. 60%), and 87% of the MABTHERA + MTX treated patients who had no progression in the first year also had no progression in the second year.

Quality of life outcomes

MABTHERA + MTX treated patients reported an improvement in all patient-reported outcomes such as Health Assessment Questionnaire Disability Index (HAQ-DI), Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-F) and Short Form-36 (SF-36) questionnaires. Significant reductions in disability index (HAQ-DI), fatigue (FACIT-F) (Table 11), and improvement in both the physical health score (PHS) and mental health score (MHS) of the SF-36 were observed in patients treated with MABTHERA + MTX compared to patients treated with MTX alone.
Table 11 Physical Function and Quality of Life Outcomes at Week 24 in Study 1

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Placebo + MTX</th>
<th>MABTHERA + MTX (2 x 1000 mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WA17042 (REFLEX; TNF-IR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean change in HAQ-DI</td>
<td>-0.1</td>
<td>-0.4***</td>
</tr>
<tr>
<td>% HAQ-DI MCID</td>
<td>20%</td>
<td>51%</td>
</tr>
<tr>
<td>Mean change in FACIT-F</td>
<td>-0.5</td>
<td>-9.1***</td>
</tr>
<tr>
<td>Mean Change in SF-36 PHS</td>
<td>0.9</td>
<td>5.8***</td>
</tr>
<tr>
<td>% SF-36 PHS MCID</td>
<td>13%</td>
<td>48%***</td>
</tr>
<tr>
<td>Mean Change in SF-36 MHS</td>
<td>1.3</td>
<td>4.7**</td>
</tr>
<tr>
<td>% SF-36 MHS MCID</td>
<td>20%</td>
<td>38%**</td>
</tr>
</tbody>
</table>

Significant difference from placebo at the primary time point: **p ≤ 0.001 ***p ≤ 0.0001
MCID (minimum clinically important difference): HAQ-DI ≥0.22, SF-36 PHS >5.42, SF-36 MHS >6.33

At week 24, in all three studies, the proportion of MABTHERA + MTX treated patients showing a clinically relevant improvement in HAQ-DI (defined as an individual total score decrease of > 0.25) was higher than among patients receiving MTX alone.

Laboratory evaluations

Approximately 10% of patients with RA tested positive for HACA (Human Anti-Chimeric Antibody) in clinical studies. The emergence of HACA was not associated with clinical deterioration or with an increased risk of reactions to subsequent infusions in the majority of patients. The presence of HACA may be associated with worsening of infusion or allergic reactions after the second infusion of subsequent courses, and failure to deplete B cells after receipt of further treatment courses has been observed rarely.

In Study 1 WA17042 (REFLEX), 15/308 (4.8%) MABTHERA + MTX treated patients and 8/209 (3.8%) patients treated with MTX alone were anti-nuclear antibody (ANA) negative at day 1 and became ANA positive at week 16 and/or week 24. The adverse event profile in these patients did not provide any evidence of new onset autoimmune disease.

In RF positive patients, marked decreases were observed in RF concentrations following treatment with MABTHERA in all three studies (range 45-64%).

Hyperuricaemia (Grade 3/4) occurred in 143/950 (15%) patients, with the majority post-infusion on days 1 and/or 15. It was not associated with any clinical symptoms, and none of these patients developed evidence of renal disease. Increases in serum uric acid are often associated with the catabolism of DNA. This finding is consistent with the destruction of B cells resulting from MABTHERA therapy.

Hypophosphataemia (Grade 3) occurred in 193/950 (21%) patients. There was also one case of Grade 4 hypophosphataemia. Most cases occurred post-infusion, where patients received oral and/or IV corticosteroids. Low phosphate levels are associated with corticosteroid treatment and osteoporosis.
Plasma total immunoglobulin concentrations, total lymphocytes counts, and white cells generally remained within normal limits following MABTHERA treatment, with the exception of a transient drop in white cell counts over the first four weeks following therapy. Lymphopenia (Grade 3/4) was experienced by 679/1003 (68%) of patients compared to 52%-54% of patients who experienced Grade 3 lymphopenia and 1%-3% of patients who experienced Grade 4 lymphopenia in the 24-week double-blind populations. Most cases occurred immediately after the first infusion, consistent with peripheral B-cell depletion, and lymphocyte numbers recovered thereafter. The majority of the Grade 4 cases were transient though 6 patients had more persistent Grade 4 lymphopenia, one of whom had a serious infection (2 occurrences of pneumonia in a diabetic patient; both cases resolved). All 6 patients had low lymphocyte counts before exposure to MABTHERA, including 2 patients who experienced up to Grade 4 lymphopenia whilst on placebo. A total of 17 non serious infections were reported all of which resolved without sequelae.

Titres of IgG antigen specific antibody to mumps, rubella, varicella, tetanus toxoid, influenza and streptococcus pneumococci remained stable over 24 weeks following exposure to MABTHERA in RA patients.

The effect of MABTHERA on a variety of biomarkers was evaluated in patients enrolled into Study 3. This substudy evaluated the impact of a single treatment course of MABTHERA on levels of biochemical markers, including markers of inflammation [Interleukin 6, C Reactive protein, Serum amyloid type A protein, Protein S100 isotypes A8 and A9], autoantibody (RF and anti-CCP immunoglobulin) production and bone turnover [osteocalcin and procollagen I N terminal peptide (P1NP)]. MABTHERA treatment, whether as monotherapy or in combination with MTX or cyclophosphamide reduced the levels of inflammatory markers significantly, relative to MTX alone, over the first 24 weeks of follow-up. Levels of markers of bone turnover, osteocalcin and P1NP, increased significantly in the MABTHERA + MTX groups compared to MTX alone.

Multiple Course Therapy

Following completion of the 24-week double blind comparative study period, patients were permitted to enrol into an open-label long term follow up study. Patients received subsequent courses of MABTHERA as needed according to the treating clinician’s assessment of disease activity and irrespective of the peripheral B lymphocyte count.

The all exposure population in the three double blind controlled trials (one Phase III and two Phase II trials) was 990 patients. Of these, 301 patients received a second course of MABTHERA 2 x 1000 mg + MTX, and 46 patients received a third course of MABTHERA 2 x 1000 mg + MTX.

At the point of data cut-off, 24.7% (193/781) of patients who had enrolled in the MABTHERA 2 x 1000 mg + MTX arms of the Phase II and Phase III studies had been retreated (point of data cut-off was defined as the time when all patients had been followed up for at least 24 weeks). Also at the data cut-off point, the majority of patients from the double blind comparative study period had received one course of treatment in the year. Kaplan-Meier analysis of time to second treatment course (censoring patients who did not receive a second treatment course or who withdrew from the study) shows an estimated median time for retreatment in the prior anti-TNF population of 364 days (interquartile range: 245-559 days), Figure 1, and 547 days (interquartile range: 302-889 days) in the no prior anti-TNF population, Figure 2.
The time interval between courses was variable. The majority of patients, who had two treatment courses at the time of cut-off, received their second course of treatment 6 to 12 months after the first treatment course. Some patients required even less frequent retreatment. The response to further therapy was at least the same magnitude as that following the initial treatment course, as evidenced by the change from baseline DAS28 (Figure 3).

Since many patients in the prior anti-TNF population remain in the studies after a single course of treatment with MABTHERA + MTX, these results are subject to change as the observation period increases.

Figure 1 Kaplan-Meier Analysis of Time to Second Treatment Course, Prior Anti-TNF Population

Survival function = Probability of not switching to re-treatment
n = 525
Figure 2 Kaplan-Meier Analysis of Time to Second Treatment Course, No Prior Anti-TNF Population

Survival function = Probability of not switching to re-treatment
n = 256

Figure 3 Mean Change in DAS28 Over Time Following First and Second Course Therapy (Prior anti-TNF population)
INDICATIONS

Non-Hodgkin’s Lymphoma

MABTHERA is indicated for treatment of patients with:

- CD20 positive, previously untreated, Stage III/IV follicular, B-cell non-Hodgkin’s lymphoma,
- CD20 positive, relapsed or refractory low grade or follicular, B-cell non-Hodgkin's lymphoma,
- CD20 positive, diffuse large B-cell non-Hodgkin’s lymphoma, in combination with chemotherapy.

Chronic Lymphocytic Leukaemia

MABTHERA is indicated for the treatment of patients with CD20 positive chronic lymphocytic leukaemia (CLL) in combination with chemotherapy.

Rheumatoid Arthritis

MABTHERA (rituximab) in combination with methotrexate is indicated for the treatment of adult patients with severe, active rheumatoid arthritis who have had an inadequate response or intolerance to at least one tumour necrosis factor (TNF) inhibitor therapy.

MABTHERA has been shown to reduce the rate of progression of joint damage as measured by x-ray when given in combination with methotrexate.

CONTRAINDICATIONS

MABTHERA is contraindicated in patients with known hypersensitivity to murine proteins or to any component of the product.

PRECAUTIONS

Progressive multifocal leukoencephalopathy (PML)

Use of MABTHERA may be associated with an increased risk of progressive multifocal leukoencephalopathy (PML). Patients must be monitored for any new or worsening neurological symptoms or signs suggestive of PML. Physicians treating patients should consider PML in the differential diagnosis of patients reporting neurological symptoms and consultation with a neurologist should be considered as clinically indicated.

Physicians should be particularly alert to symptoms suggestive of PML that the patient may not notice (e.g. cognitive, neurological or psychiatric symptoms). If such symptoms occur, further administration of MABTHERA should be immediately suspended until a diagnosis of PML has been excluded. To establish or exclude a diagnosis of PML evaluation including MRI scan, CSF testing for JC viral DNA and repeat neurological assessments, should be considered. Once PML has been excluded, the administration of MABTHERA may resume.

If a diagnosis of PML is confirmed MABTHERA must be permanently discontinued. Patients should also be advised to inform their partner or caregivers about their treatment, since they may notice symptoms that the patient is not aware of.
Non-Hodgkin’s Lymphoma and Chronic Lymphocytic Leukaemia

Infusion-related reactions

MABTHERA is associated with infusion-related reactions, which may be related to release of cytokines and/or other chemical mediators. Severe infusion-related reactions might be clinically indistinguishable from hypersensitivity reactions or cytokine release syndrome. Severe infusion-related reactions with fatal outcome have been reported during post-marketing use. Severe reactions usually manifested within 30 minutes to 2 hours after starting the first MABTHERA infusion, were characterised by pulmonary events and included, in some cases, rapid tumour lysis and features of tumour lysis syndrome in addition to fever, chills, rigors, hypotension, urticaria, angio-oedema and other symptoms. Patients with a high tumour burden or with a high number (>25 x 10^9/L) of circulating malignant cells such as patients with chronic lymphocytic leukaemia (CLL) and mantle cell lymphoma may be at higher risk of developing severe infusion-related reactions. Infusion reaction symptoms are usually reversible with interruption of the infusion. Treatment of infusion-related symptoms with diphenhydramine and paracetamol (acetaminophen) is recommended. Additional treatment with bronchodilators or IV saline may be indicated. In most cases, the infusion can be resumed at a 50% reduction in rate (e.g. from 100 mg/h to 50 mg/h) when symptoms have completely resolved. Most patients who have experienced non-life threatening infusion-related reactions have been able to complete the full course of MABTHERA therapy. Further treatment of patients after complete resolution of signs and symptoms has rarely resulted in repeated severe infusion-related reactions. Anaphylactic and other hypersensitivity reactions have been reported following the intravenous administration of proteins to patients. Adrenaline, antihistamines and corticosteroids should be available for immediate use in the event of a hypersensitivity reaction to MABTHERA.

Patients with a high number (>25 x 10^9/L) of circulating malignant cells or high tumour burden such as patients with CLL and mantle cell lymphoma, who may be at higher risk of especially severe infusion-related reactions, should only be treated with extreme caution and when other therapeutic alternatives have been exhausted. These patients should be very closely monitored throughout the first infusion. Consideration should be given to the use of a reduced infusion rate for the first infusion in these patients, or a split dosing over two days during the first cycle and any subsequent cycles if the lymphocyte count is still >25 x 10^9/L.

Pulmonary events

Pulmonary events have included hypoxia, pulmonary infiltrates, and acute respiratory failure. Some of these events have been preceded by severe bronchospasm and dyspnoea. In some cases, symptoms worsened over time, while in others initial improvement was followed by clinical deterioration. Therefore, patients experiencing pulmonary events or other severe infusion-related symptoms should be closely monitored until complete resolution of their symptoms occurs. Patients with a history of pulmonary insufficiency or those with pulmonary tumour infiltration may be at greater risk of poor outcome and should be treated with increased caution. Acute respiratory failure may be accompanied by events such as pulmonary interstitial infiltration or oedema, visible on a chest x-ray. The syndrome usually manifests itself within one or two hours of initiating the first infusion. Patients who experience severe pulmonary events should have their infusion interrupted immediately and should receive aggressive symptomatic treatment. Since initial improvement of clinical symptoms may be followed by deterioration, these patients should be closely monitored until the pulmonary event has resolved.
Rapid tumour lysis
MABTHERA mediates the rapid lysis of benign and malignant CD20-positive cells. Signs and symptoms (e.g. hyperuricaemia, hyperkalaemia, hypocalcaemia, acute renal failure, elevated LDH) consistent with tumour lysis syndrome (TLS) have been reported to occur after the first MABTHERA infusion in patients with high numbers of circulating malignant lymphocytes. Prophylaxis for TLS should be considered for patients at risk of developing rapid tumour lysis (e.g. patients with a high tumour burden or with a high number (>25 x 10⁹/L) of circulating malignant cells such as patients with CLL and mantle cell lymphoma). These patients should be followed closely and appropriate laboratory monitoring performed. Appropriate medical therapy should be provided for patients who develop signs and symptoms consistent with rapid tumour lysis. Following treatment for and complete resolution of signs and symptoms, subsequent MABTHERA therapy has been administered in conjunction with prophylactic therapy for TLS in a limited number of cases.

Cardiovascular
Since hypotension may occur during MABTHERA infusion, consideration should be given to withholding antihypertensive medications 12 hours prior to and throughout MABTHERA infusion. Angina pectoris or cardiac arrhythmia, such as atrial flutter and fibrillation, heart failure or myocardial infarction have occurred in patients treated with MABTHERA. Therefore patients with a history of cardiac disease should be monitored closely. Infusions should be discontinued in the event of serious or life-threatening cardiac arrhythmias.

Monitoring of Blood Counts
Although MABTHERA is not myelosuppressive in monotherapy, caution should be exercised when considering treatment of patients with neutrophil counts of <1.5 x 10⁹/L and/or platelet counts of <75 x 10⁹/L, as clinical experience with such patients is limited. MABTHERA has been used in patients who underwent autologous bone marrow transplantation and in other risk groups with a presumable reduced bone marrow function without inducing myelotoxicity. Consideration should be given to the need for regular full blood counts, including platelet counts, during monotherapy with MABTHERA. When MABTHERA is given in combination with CHOP or CVP chemotherapy, regular full blood counts should be performed according to usual medical practice.

Infections
MABTHERA treatment should not be initiated in patients with severe active infections.

Cases of Hepatitis B virus (HBV) reactivation, occasionally with fulminant hepatitis, hepatic failure, and death have been reported in some patients with haematologic malignancies treated with MABTHERA. The majority of patients received MABTHERA in combination with chemotherapy. Isolated cases have been reported in patients who either had evidence of antibodies against Hepatitis B surface antigen before treatment or did not have any such antibodies. The median time to diagnosis of hepatitis was approximately 4 months after the initiation of MABTHERA and approximately one month after the last dose.

Persons at high risk of HBV infection should always be screened before initiation of MABTHERA. Reactivation of HBV infection is a well-known complication in patients with chronic hepatitis B, especially in those receiving cytotoxic or immunosuppressive therapy. In addition, non-Hodgkin’s lymphoma of itself may be an independent risk factor for HBV reactivation. Carriers of hepatitis B, and patients with evidence of having recovered from
hepatitis B, should be closely monitored for clinical and laboratory signs of active HBV infection and for signs of hepatitis during and up to one year following therapy with MABTHERA.

In patients who develop reactivation of viral hepatitis B, MABTHERA and any concomitant chemotherapy should be discontinued and appropriate treatment including antiviral therapy initiated. There are insufficient data regarding the safety of resuming therapy with MABTHERA in patients who develop hepatitis subsequent to HBV reactivation.

The following additional serious viral infections, either new, reactivated or exacerbated, have been identified in clinical studies or post-marketing reports. The majority of patients were profoundly immune-suppressed. These viral infections included JC virus [progressive multifocal leukoencephalopathy (PML)], cytomegalovirus, herpes simplex virus, parvovirus B19, varicella zoster virus, West Nile virus and hepatitis C. In some cases, the viral infections occurred up to one year following discontinuation of MABTHERA and have resulted in death.

Immunisation
The safety of immunisation with live viral vaccines, following MABTHERA therapy has not been studied and vaccination with live virus vaccines is not recommended.

Patients treated with MABTHERA may receive non-live vaccinations. However, with non-live vaccines response rates may be reduced. In a non-randomised study, patients with relapsed low-grade NHL who received MABTHERA monotherapy when compared to healthy untreated controls had a lower rate of response to vaccination with tetanus recall antigen (16% vs 81%) and Keyhole Limpet Haemocyanin (KLH) neoantigen (4% vs 69% when assessed for > 2-fold increase in antibody titer).

Mean pre-therapeutic antibody titers against a panel of antigens (Streptococcus pneumoniae, influenza A, mumps, rubella, varicella) were maintained for at least 6 months after treatment with MABTHERA.

Progressive multifocal leukoencephalopathy (PML)
Cases of progressive multifocal leukoencephalopathy (PML) have been reported during use of MABTHERA in NHL and CLL. The majority of patients had received MABTHERA in combination with chemotherapy or as part of a haematopoietic stem cell transplant. (See BOXED WARNING, ADVERSE EFFECTS and Post-Marketing Experience.)

Rheumatoid Arthritis

Methotrexate (MTX) naïve populations
The use of MABTHERA is not recommended in MTX-naïve patients since a favourable benefit-risk relationship has not been established.

Infusion-related Reactions
MABTHERA is associated with infusion-related reactions (IRRs), which may be related to release of cytokines and/or other chemical mediators. Premedication consisting of an analgesic/antipyretic drug and an antihistamine drug should always be administered before
each infusion of MABTHERA. Premedication with IV glucocorticoid significantly reduced the incidence and severity of these events.

Most infusion events reported were mild to moderate in severity. Severe IRRs with fatal outcome have been reported in the post-marketing setting (see Post-Marketing Experience – Rheumatoid Arthritis). Closely monitor patients with pre-existing cardiac conditions and those who experienced prior cardiopulmonary adverse reactions. The most common symptoms were headache, pruritus, throat irritation, flushing, rash, urticaria, hypertension, and pyrexia. In general, the proportion of patients experiencing any infusion reaction was higher following the first infusion of any treatment course than following the second infusion. Subsequent MABTHERA infusions were better tolerated by patients than the initial infusion. Fewer than 1% of patients experienced serious IRRs, with most of these reported during the first infusion of the first course (see Adverse Effects - Experience from Rheumatoid Arthritis Clinical Trials). The reactions reported were usually reversible with a reduction in rate, or interruption, of MABTHERA infusion and administration of an anti-pyretic, an antihistamine, and, occasionally, oxygen, IV saline or bronchodilators, and glucocorticoids if required. Depending on the severity of the IRR and the required interventions, temporarily or permanently discontinue MABTHERA. In most cases, the infusion can be resumed at a 50% reduction in rate (e.g. from 100 mg/h to 50 mg/h) when symptoms have completely resolved.

Anaphylactic and other hypersensitivity reactions have been reported following the IV administration of proteins to patients. Medicinal products for the treatment of hypersensitivity reactions, e.g., adrenaline, antihistamines and glucocorticoids, should be available for immediate use in the event of an allergic reaction during administration of MABTHERA. The presence of HACA may be associated with worsening infusion or allergic reactions after the second infusion of subsequent courses.

Infections

Serious infections, including fatalities, can occur during therapy with MABTHERA. Based on the mechanism of action of MABTHERA and the knowledge that B cells play an important role in maintaining normal immune response, patients may have an increased risk of infection following MABTHERA therapy. MABTHERA should not be administered to patients with an active infection or severely immunocompromised patients (e.g. where levels of CD4 or CD8 are very low). Physicians should exercise caution when considering the use of MABTHERA in patients with a history of recurring or chronic infections or with underlying conditions which may further predispose patients to serious infection. Patients who develop infection following MABTHERA therapy should be promptly evaluated and treated appropriately.

Cases of reactivation of hepatitis B infection, including those with a fatal outcome, have been reported in RA patients receiving MABTHERA.

Hepatitis B virus (HBV) screening should always be performed in high risk patients before initiation of treatment with MABTHERA. Carriers of hepatitis B and patients with a history of hepatitis B should be closely monitored for clinical and laboratory signs of active HBV infection during and for several months following MABTHERA therapy.

Progressive multifocal leukoencephalopathy (PML)

Cases of progressive multifocal leukoencephalopathy (PML) have been reported following use of MABTHERA for the treatment of autoimmune diseases including RA. Several but not all of the reported cases involved patients with recognised risk factors for PML, including the
underlying disease and long term immunosuppressive therapy or chemotherapy. (See BOXED WARNING and PRECAUTIONS.) The efficacy and safety of MABTHERA for the treatment of autoimmune diseases other than RA has not been established.

Immunisation

Physicians should review the patient’s vaccination status and follow current immunisation guidelines prior to treatment with MABTHERA. Vaccination should be completed at least 4 weeks prior to first administration of MABTHERA.

The safety of immunisation with live viral vaccines following MABTHERA therapy has not been studied. Therefore vaccination with live virus vaccines is not recommended whilst on MABTHERA or whilst peripherally B cell depleted.

Patients treated with MABTHERA may receive non-live vaccinations. However, response rates to non-live vaccines may be reduced. In a randomised study, patients with RA treated with MABTHERA and MTX had comparable response rates to tetanus recall antigen (39% vs 42%), reduced rates to pneumococcal polysaccharide vaccine (43% vs 82% to at least 2 pneumococcal antibody serotypes), and KLH neoantigen (47% vs 93%), when given at least 6 months after MABTHERA as compared to patients only receiving MTX. Should non-live vaccinations be required whilst receiving MABTHERA therapy, these should be completed at least 4 weeks prior to commencing the next course of MABTHERA.

In the overall experience of MABTHERA repeat treatment over one year, the proportions of patients with positive antibody titers against S. pneumoniae, influenza, mumps, rubella, varicella and tetanus toxoid were generally similar to the proportions at baseline.

Cardiovascular Events

Patients with a history of cardiac disease should be monitored closely during infusions. Infusions should be discontinued in the event of serious or life-threatening cardiac arrhythmias (see Precautions for Cardiovascular Events under Non-Hodgkin’s Lymphoma and Chronic Lymphocytic Leukaemia section). There are no data on the safety of MABTHERA in patients with moderate or severe heart failure (NYHA class III or IV) or severe, uncontrolled cardiovascular disease. In patients treated with MABTHERA, the occurrence of pre-existing ischaemic cardiac conditions becoming symptomatic, such as angina pectoris, has been observed, as well as atrial fibrillation and flutter. Therefore, in patients with a known cardiac history, the risk of cardiovascular complications resulting from infusion reactions should be considered before treatment with MABTHERA and patients closely monitored during administration. Since hypotension may occur during MABTHERA infusion, consideration should be given to withholding anti-hypertensive medications 12 hours prior to the MABTHERA infusion.

Concomitant/Sequential Use of Other DMARDs

The concomitant use of MABTHERA and antirheumatic therapies other than those specified under the RA indication and dosing is not recommended.

Limited data are available on the safety of the use of biologic agents or DMARDs other than MTX in patients exhibiting peripheral B cell depletion following treatment with MABTHERA. If biologic agents and/or DMARDs are used following MABTHERA therapy, patients should be observed for signs of infection.
Malignancy
Immunomodulatory drugs may increase the risk of malignancy. On the basis of limited experience with MABTHERA in RA patients (see ‘ADVERSE EFFECTS - Experience from Rheumatoid Arthritis Clinical Trials’) a possible risk for the development of solid tumours cannot be excluded at this time, although present data do not seem to suggest any increased risk.

Patients with Renal or Hepatic Impairment
The safety and effectiveness of MABTHERA in patients with renal or hepatic impairment has not been established. MTX is contraindicated in such patients and since MABTHERA is given in combination with MTX these patients were not included in the clinical studies for RA.

General Precautions

Carcinogenicity, Mutagenicity and Impairment of Fertility
No animal studies have been performed to establish the carcinogenic or mutagenic potential of MABTHERA, or to determine its effects on fertility in males or females.

Use in Pregnancy (Category C)
It is not known whether MABTHERA can cause foetal harm when administered to a pregnant woman. There are no adequate and well-controlled data from studies in pregnant women, however transient B-cell depletion and lymphocytopenia have been reported in some infants born to mothers exposed to rituximab. In clinical studies in patients with RA, three pregnancies occurred following exposure to MABTHERA + MTX with two resulting in spontaneous abortions and the third ongoing at the time. Rituximab has been shown to cause B-cell depletion in the monkey foetus. MABTHERA should not be given to a pregnant woman, unless the potential benefit outweighs the potential risk.

Individuals of child-bearing potential should use effective contraceptive methods during treatment and for up to 12 months following MABTHERA therapy.

Developmental toxicity studies performed in cynomolgus monkeys revealed no evidence of embryotoxicity in utero at relative exposure levels (AUC) similar to that anticipated clinically. New born offspring of maternal animals exposed to MABTHERA during lactation and/or gestation showed no untoward toxicity except for depleted B cell populations during the postnatal phase at the same relative exposure. B cell levels in human neonates following maternal exposure to MABTHERA have not been studied.

Use in Lactation
It is not known whether MABTHERA is excreted in human milk. In monkey studies, rituximab was excreted in the milk and was detected in the serum of breast-fed infants. Reversible B-cell depletion was observed in all monkey infants exposed to rituximab via maternal transfer during lactation and/or gestation. It is recommended that a nursing woman discontinue breast-feeding whilst undergoing treatment with MABTHERA.

Use in Children
The safety and effectiveness of MABTHERA in paediatric patients have not been established. Hypogammaglobulinaemia has been observed in paediatric patients treated with
MABTHERA, in some cases severe and requiring long-term immunoglobulin substitution therapy. The consequences of long term B cell depletion in paediatric patients are unknown.

Driving and Operating Machinery
It is not known whether MABTHERA has an effect on the ability to drive and operate machines, though the pharmacologic activity and adverse events reported to date do not indicate that such an effect is to be expected.

Drug /Laboratory Interactions
Currently, there are limited data on possible drug interactions with MABTHERA.

In CLL patients, co-administration with MABTHERA did not appear to have an effect on the pharmacokinetics of fludarabine or cyclophosphamide. In addition, there was no apparent effect of fludarabine and cyclophosphamide on the pharmacokinetics of MABTHERA.

Co-administration with MTX had no effect on the pharmacokinetics of MABTHERA in RA patients.

Patients with human anti-mouse antibody or human anti-chimeric antibody (HAMA/HACA) titres may have allergic or hypersensitivity reactions when treated with other diagnostic or therapeutic monoclonal antibodies.

The tolerability of simultaneously or sequential combination of MABTHERA with chemotherapy other than CHOP or CVP, or agents which are liable to cause depletion of normal B cells is not well defined.

In a small cohort of patients with RA, 110 patients received subsequent therapy with other DMARDs (including biologicals). Patients received subsequent DMARDs 4–6 months following therapy with MABTHERA and generally while peripherally B cell depleted. The rate of clinically relevant infections was 7.8 per 100 patient years.

ADVERSE EFFECTS

Experience from Clinical Trials in Haemato-Oncology
The most common adverse reactions of MABTHERA (incidence ≥ 25%) observed in patients with NHL are infusion reactions, fever, chills, infection, asthenia and lymphopenia. The most important serious adverse reactions of MABTHERA are infusion reactions, tumour lysis syndrome, mucocutaneous toxicities, hepatitis B reactivation with fulminant hepatitis, PML, other viral infections, cardiac arrhythmias, renal toxicity, and bowel obstruction and perforation.

The frequencies of adverse drug reactions (ADRs) reported with MABTHERA alone or in combination with chemotherapy are summarised in the tables below and are based on data from clinical trials. These ADRs had either occurred in single arm studies or had occurred with at least a 2% difference compared to the control arm in at least one of the major randomised clinical trials. ADRs are added to the appropriate category in the tables below according to the highest incidence seen in any of the major clinical trials. Within each frequency grouping ADRs are listed in descending order of severity. Frequencies are defined
as very common ≥ 1/10 (≥ 10%), common ≥ 1/100 to < 1/10 (≥ 1% to < 10%) and uncommon ≥ 1/1,000 to < 1/100 (≥ 0.1% to < 1%).

MABTHERA monotherapy/maintenance therapy

The ADRs in the table below are based on data from single-arm studies including 356 patients with low-grade or follicular lymphoma, treated with MABTHERA weekly as a single agent for the treatment or re-treatment of non-Hodgkin’s lymphoma up to 4 weeks in most patients and from 25 patients who received doses other than 375 mg/m² for four doses and up to 500 mg/m² single dose in the Phase I setting (see CLINICAL TRIALS). The table also contains ADRs based on data from 671 patients with follicular lymphoma who received MABTHERA as maintenance therapy for up to 2 years following response to initial induction with CHOP, R-CHOP, R-CVP or R-FCM (see CLINICAL TRIALS). The ADRs were reported up to 12 months after treatment with monotherapy and up to 1 month after treatment with MABTHERA maintenance.

Table 12 Summary of ADRs reported in patients with low-grade or follicular lymphoma receiving MABTHERA monotherapy (N = 356) or MABTHERA maintenance treatment (N = 671) in clinical trials

<table>
<thead>
<tr>
<th>System Organ Class</th>
<th>Very Common (≥ 10%)</th>
<th>Common (≥1% - < 10%)</th>
<th>Uncommon (≥0.1% - < 1%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>bacterial infections, viral infections</td>
<td>sepsis, pneumonia, febrile infection, herpes zoster, respiratory tract infection, fungal infections, infections of unknown aetiology</td>
<td></td>
</tr>
<tr>
<td>Blood and the lymphatic system disorders</td>
<td>neutropenia, leucopenia</td>
<td>anaemia, thrombocytopenia</td>
<td>coagulation disorders, transient aplastic anaemia, haemolytic anaemia, lymphadenopathy</td>
</tr>
<tr>
<td>Immune system disorders</td>
<td>angioedema</td>
<td>hypersensitivity</td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td></td>
<td>hyperglycaemia, weight decrease, peripheral oedema, face oedema, increased LDH, hypocalcaemia</td>
<td></td>
</tr>
<tr>
<td>Psychiatric disorders</td>
<td></td>
<td></td>
<td>depression, nervousness</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td></td>
<td>paresthesia, hypoesthesia, agitation, insomnia, vasodilatation, dizziness, anxiety</td>
<td>dysgeusia</td>
</tr>
<tr>
<td>Eye disorders</td>
<td></td>
<td>lacrimation disorder, conjunctivitis</td>
<td></td>
</tr>
<tr>
<td>Ear and labyrinth disorders</td>
<td></td>
<td>tinnitus, ear pain</td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td></td>
<td>myocardial infarction, arrhythmia, atrial fibrillation, tachycardia, cardiac disorder</td>
<td>left ventricular failure, supraventricular tachycardia, ventricular tachycardia, angina, myocardial ischaemia, bradycardia</td>
</tr>
<tr>
<td>Vascular disorders</td>
<td></td>
<td>hypertension, orthostatic hypotension, hypotension</td>
<td></td>
</tr>
</tbody>
</table>
Respiratory, thoracic and mediastinal disorders

<table>
<thead>
<tr>
<th>ADR</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>bronchospasm, respiratory disease, chest pain, dyspnoea, cough, rhinitis</td>
<td>(\geq 10%)</td>
</tr>
<tr>
<td>asthma, bronchiolitis obliterans, lung disorder, hypoxia</td>
<td>(> 10% - < 1%)</td>
</tr>
</tbody>
</table>

Gastrointestinal disorders

<table>
<thead>
<tr>
<th>ADR</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>nausea</td>
<td>(\geq 1%)</td>
</tr>
<tr>
<td>vomiting, diarrhoea, abdominal pain, dysphagia, stomatitis, constipation dyspepsia, anorexia, throat irritation</td>
<td>abdominal enlargement</td>
</tr>
</tbody>
</table>

Skin and subcutaneous tissue disorders

<table>
<thead>
<tr>
<th>ADR</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>pruritis, rash</td>
<td>urticaria, alopecia, sweating, night sweats</td>
</tr>
</tbody>
</table>

Musculoskeletal, connective tissue and bone disorders

<table>
<thead>
<tr>
<th>ADR</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>hypertonia, myalgia, arthralgia, back pain, neck pain, pain</td>
<td></td>
</tr>
</tbody>
</table>

General disorders and administration site conditions

<table>
<thead>
<tr>
<th>ADR</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>fever, chills, asthenia, headache</td>
<td>tumour pain, flushing, malaise, cold syndrome, pain at the infusion site</td>
</tr>
</tbody>
</table>

Investigations

<table>
<thead>
<tr>
<th>Frequency</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>decreased IgG levels</td>
<td></td>
</tr>
</tbody>
</table>

For each term, the frequency count was based on reactions of all grades (from mild to severe), except for terms marked with "*" where the frequency count was based only on severe (\(\geq \) Grade 3 NCI common toxicity criteria) reactions. Only the highest frequency observed in either trial is reported.

MABTHERA in combination with chemotherapy in NHL and CLL

The ADRs listed in the table below are based on rituximab-arm data from controlled clinical trials that occurred in addition to those seen with monotherapy/maintenance therapy and/or at a higher frequency grouping: 202 patients with diffuse large B-cell lymphoma (DLBCL) treated with R-CHOP, from 234 and 162 patients with follicular lymphoma treated with R-CHOP or R-CVP, respectively, and from 397 previously untreated CLL patients and 274 relapsed/refractory CLL patients treated with rituximab in combination with fludarabine and cyclophosphamide (R-FC) (see CLINICAL TRIALS).

The safety information of MABTHERA in combination with certain chemotherapy regimens is limited. When MABTHERA is used with other chemotherapy medicines, prescribers are advised to consider the adverse reaction profile of the component medicine(s).

Table 13 Summary of severe ADRs reported in patients receiving R-CHOP in DLBCL (N=202), R-CHOP in follicular lymphoma (N=234), R-CVP in follicular lymphoma (N=162) and R-FC in previously untreated (N=397) or relapsed/refractory (N=274) CLL

<table>
<thead>
<tr>
<th>System Organ Class</th>
<th>Very Common ((\geq 10%))</th>
<th>Common ((\geq 1% - < 10%))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>bronchitis</td>
<td>acute bronchitis, sinusitis, hepatitis B*</td>
</tr>
<tr>
<td>Blood and the lymphatic system disorders</td>
<td>fébrile neutropenia, thrombocytopenia</td>
<td>pancytopenia, granulocytopenia</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>alopecia</td>
<td>skin disorder</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>-</td>
<td>fatigue, shivering</td>
</tr>
</tbody>
</table>

*includes reactivation and primary infections; frequency based on R-FC regimen in relapsed/refractory CLL Frequency count was based on only severe reactions defined in clinical trials as \(\geq \) Grade 3 NCI common toxicity criteria. Only the highest frequency observed in any trial is reported.

The following terms have been reported as adverse events, however, were reported at a similar (\(<2\%\) difference between the groups) or lower incidence in the MABTHERA-arms compared to control arms: haematotoxicity, neutropenic infection, urinary tract infection,
septic shock, superinfection lung, implant infection, septicaemia staphylococcal, lung infection, rhinorrhoea, pulmonary oedema, cardiac failure, sensory disturbance, venous thrombosis, mucosal inflammation nos, influenza-like illness, oedema lower limb, abnormal ejection fraction, pyrexia, general physical health deterioration, fall, multi-organ failure, venous thrombosis deep limb, positive blood culture, diabetes mellitus inadequate control.

Further information on selected, serious adverse drug reactions

Infusion-related reactions

Monotherapy – 4 weeks treatment
Hypotension, fever, chills, rigors, urticaria, bronchospasm, sensation of tongue or throat swelling (angioedema), nausea, fatigue, headache, pruritus, dyspnoea, rhinitis, vomiting, flushing, and pain at disease sites have occurred in association with MABTHERA infusion as part of an infusion-related symptom complex. Such infusion-related symptoms occurred in the majority of patients during the first MABTHERA infusion (see PRECAUTIONS). The incidence of infusion-related symptoms decreased from 77% (7% Grade 3/4) with the first infusion to approximately 30% (2% Grade 3/4) with the fourth infusion and to 14% (no Grade 3/4 events) with the eighth infusion.

Maintenance Treatment (NHL) up to 2 years
Non-serious signs and symptoms suggestive of an infusion-related reaction were reported in 41% of patients for general disorders (mainly asthenia, pyrexia, influenza like illness, pain) and in 7% of patients for immune system disorders (hypersensitivity). Serious infusion-related reactions (defined as serious adverse events starting during or within one day of a rituximab infusion) occurred in < 1% of patients treated with MABTHERA maintenance.

Combination Therapy (R-CVP in NHL; R-CHOP in DLBCL; R-FC in CLL)
Severe infusion-related reactions occurred in up to 12% of all patients at the time of the first treatment cycle with rituximab in combination with chemotherapy. The incidence of Grade 3 or 4 infusion-related reactions decreased to less than 1% by the eighth cycle of therapy. The signs and symptoms were consistent with those observed during monotherapy (see PRECAUTIONS), but also included dyspepsia, rash, hypertension, tachycardia, features of tumour lysis syndrome. Additional reactions reported in isolated cases at the time of R-chemotherapy were myocardial infarction, atrial fibrillation, pulmonary oedema and acute reversible thrombocytopenia.

Infections

Monotherapy – 4 weeks treatment
MABTHERA induced B-cell depletion in 70% to 80% of patients and was associated with decreased serum immunoglobulins in only a minority of patients. Infectious events, irrespective of causal assessment, occurred in 30.3% of 356 patients: 18.8% of patients had bacterial infections, 10.4% had viral infections, 1.4% had fungal infections, and 5.9% had infections of unknown aetiology. Severe infectious events (Grade 3 or 4), including sepsis occurred in 3.9% of patients; in 1.4% during the treatment period and in 2.5% during the follow-up period.

Maintenance Treatment (NHL) up to 2 years
The proportion of patients with Grade 1 to 4 infections was 25% in the observation group and 45% in the MABTHERA group with Grade 3 or 4 infections in 3% of patients on observation and 11% receiving MABTHERA maintenance treatment. Grade 3 to 4 infections reported in
≥ 1% of patients in the MABTHERA arm were pneumonia (2%), respiratory tract infection (2%), febrile infection (1%) and herpes zoster (1%). In a large proportion of infections (all grades), the infectious agent was not specified or isolated, however, where an infectious agent was specified, the most frequently reported underlying agents were bacterial (observation 2%, MABTHERA 10%), viruses (observation 7%, MABTHERA 11%) and fungi (observation 2%, MABTHERA 4%). There was no cumulative toxicity in terms of infections reported over the 2-year maintenance period.

Data from a phase III clinical trial included 2 cases of fatal PML in NHL patients that occurred after disease progression and retreatment (see BOXED WARNING and PRECAUTIONS).

Combination Therapy (R-CVP in NHL; R-CHOP in DLBCL; R-FC in CLL)

In the R-CVP study the overall proportion of patients with infections or infestations during treatment and for 28 days after trial treatment end was comparable between the treatment groups (33% R-CVP, 32% CVP). The most common infections were upper respiratory tract infections which were reported for 12.3% patients on R-CVP and 16.4% patients receiving CVP; most of these infections were nasopharyngitis. Serious infections were reported in 4.3% of the patients receiving R-CVP and 4.4% of the patients receiving CVP. No life threatening infections were reported during this study.

In the R-CHOP study the overall incidence of Grade 2 to 4 infections was 45.5% in the R-CHOP group and 42.3% in the CHOP group. Grade 2 to 4 fungal infections were more frequent in the R-CHOP group (4.5% vs 2.6% in the CHOP group); this difference was due to a higher incidence of localised Candida infections during the treatment period. The incidence of Grade 2 to 4 herpes zoster, including ophthalmic herpes zoster, was higher in the R-CHOP group (4.5%) than in the CHOP group (1.5%), with 7 of a total of 9 cases in the R-CHOP group occurring during the treatment phase. The proportion of patients with Grade 2 to 4 infections and/or febrile neutropenia was 55.4% in the R-CHOP group and 51.5% in the CHOP group. Febrile neutropenia (i.e. no report of concomitant documented infection) was reported only during the treatment period, in 20.8% in the R-CHOP group and 15.3% in the CHOP group.

In patients with CLL, the overall incidence of Grade 3 or 4 infections during treatment and for 28 days after the end of trial treatment was comparable between the treatment groups both in the first-line (18% R-FC vs 17% FC) and in the relapsed/refractory setting (19% R-FC vs 18% FC). The incidence of Grade 3 or 4 hepatitis B infection (reactivation and primary infection) was 2% R-FC vs 0% FC.

Haematologic Events

Monotherapy – 4 weeks treatment

Severe (Grade 3 and 4) neutropenia was reported in 4.2% of patients, severe anaemia was reported in 1.1% of patients and severe thrombocytopenia was reported in 1.7% of patients. A single occurrence of transient aplastic anaemia (pure red cell aplasia) and two occurrences of haemolytic anaemia following MABTHERA therapy were reported.

Maintenance Treatment (NHL) up to 2 years

Leucopenia (all grades) occurred in 26% of patients on observation vs 31% of patients in the MABTHERA arm, and neutropenia was reported in 13% of patients on observation and in 25% of patients on MABTHERA. There was a higher incidence of Grade 3-4 neutropenia.
(observation 5%, MABTHERA 11%) and leucopenia (observation 2%, MABTHERA 5%) in the MABTHERA arm compared to the observation arm. The incidence of Grade 3 to 4 thrombocytopenia (observation 1%, MABTHERA < 1%) was low.

Combination Therapy (R-CVP in NHL; R-CHOP in DLBCL; R-FC in CLL)

Severe (Grade 3 or 4) Neutropenia: There was a higher incidence of Grade 3 or 4 neutropenia in the MABTHERA containing study arms compared to the chemotherapy arms. In the R-CVP study, the incidence of neutropenia was 24% in the R-CVP arm versus 14% of patients in the CVP arm. These laboratory findings were reported as adverse events and resulted in medical intervention in 3.1% of patients on R-CVP and 0.6% of patients on CVP. The higher incidence of neutropenia in the R-CVP group was not associated with a higher incidence of infections and infestations. In patients with previously untreated CLL, Grade 3 or 4 neutropenia was reported as an adverse event in 30% of patients in the R-FC arm and in 19% of patients in the FC arm. In patients with relapsed/refractory CLL, the incidence of Grade 3 or 4 neutropenia adverse events was slightly higher in the R-FC arm (42% R-FC) compared to FC arm (40%).

Severe (Grade 3 or 4) Leucopenia: In the R-CHOP study, the incidence of severe leucopenia was 88% in the R-CHOP arm versus 79% in the CHOP arm. In CLL first-line, more patients receiving R-FC experienced Grade 3 or 4 leucopenia (23%) compared with patients receiving FC (12%). In patients with relapsed/refractory CLL, the overall incidence of Grade 3 or 4 leucopenia adverse events was comparable between the treatment arms (4% R-FC vs 3% FC).

Severe (Grade 3 or 4) Anaemia and Thrombocytopenia: No relevant difference between the treatment arms was observed with respect to Grade 3 and 4 anaemia or thrombocytopenia for the R-CHOP and R-CVP studies. In the R-CVP study, the incidence of anaemia was 0.6% in the R-CVP arm versus 1.9% in the CVP arm. The incidence of thrombocytopenia was 1.2% in the R-CVP arm versus 0% in the CVP arm. In the R-CHOP study, the incidence of anaemia was 14% in the R-CHOP arm versus 19% in the CHOP arm. The incidence of thrombocytopenia was 15% in the R-CHOP arm versus 16% in the CHOP arm. The time to recovery from all haematological abnormalities was comparable in the two treatment groups. In the CLL first-line study, Grade 3 or 4 anaemia was reported by 4% of patients treated with R-FC compared to 7% of patients receiving FC, and Grade 3 or 4 thrombocytopenia was reported by 7% of patients in the R-FC group compared to 10% of patients in the FC group. In the relapsed/refractory CLL study, adverse events of Grade 3 or 4 anaemia were reported in 12% of patients treated with R-FC compared to 13% of patients receiving FC and Grade 3 or 4 thrombocytopenia was reported by 11% of patients in the R-FC group compared to 9% of patients in the FC group.

Cardiovascular Events

Monotherapy – 4 weeks treatment

Cardiovascular events were reported in 18.8% of patients during the treatment period. The most frequently reported events were hypotension and hypertension. Two patients (0.6%) experienced Grade 3 or 4 arrhythmia (including ventricular and supraventricular tachycardia) during a MABTHERA infusion and one patient with a history of myocardial infarction experienced angina pectoris, evolving into myocardial infarction 4 days later.
Maintenance Treatment (NHL) up to 2 years

The incidence of Grade 3 to 4 cardiac disorders was comparable between the two treatment groups (4% in observation, 5% in MABTHERA). Cardiac events were reported as serious adverse event in < 1% of patients on observation and in 3% of patients on MABTHERA: atrial fibrillation (1%), myocardial infarction (1%), left ventricular failure (< 1%), myocardial ischaemia (< 1%).

Combination Therapy (R-CVP in NHL; R-CHOP in DLBCL; R-FC in CLL)

In the R-CVP study the overall incidence of cardiac disorders in the safety population was low (4% R-CVP, 5% CVP), with no relevant differences between the treatment groups.

In the R-CHOP study the incidence of Grade 3 and 4 cardiac arrhythmias, predominantly supraventricular arrhythmias such as tachycardia and atrial flutter/fibrillation, was higher in the R-CHOP group (14 patients, 6.9%) as compared to the CHOP group (3 patients, 1.5%). All of these arrhythmias either occurred in the context of a MABTHERA infusion or were associated with predisposing conditions such as fever, infection, acute myocardial infarction or pre-existing respiratory and cardiovascular disease. No difference between the R-CHOP and CHOP group was observed in the incidence of other Grade 3 and 4 cardiac events including heart failure, myocardial disease and manifestations of coronary artery disease.

In CLL, the overall incidence of Grade 3 or 4 cardiac disorders was low both in the first-line study (4% R-FC vs 3% FC) and in the relapsed/refractory study (4% R-FC vs 4% FC).

IgG Levels

Maintenance Treatment (NHL) up to 2 years

After induction treatment, median IgG levels were below the lower limit of normal (LLN) (< 7 g/L) in both the observation and the MABTHERA groups. In the observation group, the median IgG level subsequently increased to above the LLN, but remained constant during MABTHERA treatment. The proportion of patients with IgG levels below the LLN was about 60% in the MABTHERA group throughout the 2 year treatment period, while it decreased in the observation group (36% after 2 years). Monitoring of IgG levels should be considered for patients treated with MABTHERA. IV Ig substitution may be indicated for patients with decreased IgG levels.

Neurologic Events

Combination Therapy (R-CVP in NHL; R-CHOP in DLBCL; R-FC in CLL)

During the treatment period, four patients (2%) in the R-CHOP group, all with cardiovascular risk factors, experienced thromboembolic cerebrovascular accidents during the first treatment cycle. There was no difference between the treatment groups in the incidence of other thromboembolic events. In contrast, three patients (1.5%) had cerebrovascular events in the CHOP group, all of which occurred during the follow-up period.

In CLL, the overall incidence of Grade 3 or 4 nervous system disorders was low both in the first-line study (4% R-FC vs 4% FC) and in the relapsed/refractory study (3% R-FC vs 3% FC).

Subpopulations

The adverse events described below are only those considered by the investigator to be related to treatment with MABTHERA.
Elderly patients (≥ 65 years)

Monotherapy – 4 weeks treatment: The incidence of any ADR and of Grade 3 and 4 ADRs was similar in elderly (N=94) and younger (N=237) patients (88.3% versus 92.0% for any ADR and 16.0% versus 18.1% for Grade 3 and 4 ADR).

Combination Therapy: The incidence of Grade 3 or 4 blood and lymphatic adverse events was higher in elderly patients (≥ 65 years of age) compared to younger patients, with previously untreated or relapsed/refractory CLL.

Bulky disease: Patients with bulky disease (N=39) had a higher incidence of Grade 3 and 4 ADRs than patients without bulky disease (N=195; 25.6% versus 15.4%). The incidence of any ADR was similar in these two groups (92.3% in bulky disease versus 89.2% in non-bulky disease).

Re-treatment: The percentage of patients reporting any adverse event and Grade 3 and 4 ADRs upon re-treatment (N=60) with further courses of MABTHERA was similar to the percentage of patients reporting any ADR and Grade 3 and 4 ADRs upon initial exposure (N=203; 95.0% versus 89.7% for any ADR and 13.3% versus 14.8% for Grade 3 and 4 ADRs).

Experience from Clinical Trials in Rheumatoid Arthritis

The clinical efficacy of MABTHERA, given together with methotrexate, was studied in three double blind controlled clinical trials (one Phase III and two Phase II trials) in patients with rheumatoid arthritis. 1039 patients received at least one treatment course, 570 patients received two or more courses of treatment during the follow up period, 191 patients three or more courses, 40 patients four or more courses and 3 patients received 5 or more courses during the follow up period. So far 839 patients have been followed for more than a year, 139 for more than 2 years and 89 for more than 3 years post MABTHERA treatment.

In clinical trials patients received 2 x 1000 mg of MABTHERA separated by an interval of two weeks; in addition to MTX (10-25 mg/week) (see DOSAGE AND ADMINISTRATION – Rheumatoid Arthritis). MABTHERA infusions were administered after an IV infusion of 100 mg methylprednisolone; the majority of patients also received treatment with oral prednisone for 15 days. ADRs, which occurred with at least a 2% difference compared to the control arm and more frequently by patients who had received at least one infusion of MABTHERA than among patients that had received placebo in the Phase III trial and the combined population included in Phase II studies, are listed in the table below. Frequencies are defined as very common (≥ 10%) and common (≥ 1% to < 10%).

The most frequent ADRs considered due to receipt of 2 x 1000 mg MABTHERA in Phase II and III studies were acute infusion reactions. Infusion reactions occurred in 15% patients following the first infusion of MABTHERA and 5% in placebo patients. Infusion reactions decreased to 2% following the second infusion in both MABTHERA and placebo groups.
| Table 14 Summary of Adverse Reactions Occurring in Patients with Rheumatoid Arthritis receiving MABTHERA during Phase II and III Clinical Studies † |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| | Phase II Study Population | | Phase III Study Population |
| | Very Common (≥ 10%) | Common (≥ 1% - < 10%) | Very Common (≥ 10%) | Common (≥ 1% - < 10%) |
| Acute Infusion reactions* | hypertension, rash, pruritus, chills, pyrexia, rhinitis, throat irritation | hypertension, nausea, rash, pyrexia, pruritus, urticaria, throat irritation, hot flush, hypotension |
| Gastrointestinal disorders | dyspepsia | dyspepsia |
| Infections and Infestations | any infection | urinary tract infections | any infection, upper respiratory tract infection |
| Metabolism and Nutritional disorders | | | hypercholesterolemia |
| Musculo skeletal disorders | arthralgia/ musculoskeletal pain | arthralgia/ musculoskeletal pain, osteoarthritis |
| Nervous System disorders | migraine | paraesthesia |

† This table include all events with an incidence difference of ≥ 2 % for rituximab compared to placebo

* Reactions occurring during or within 24 hours of infusion

The following adverse events were reported at a frequency between 1% and 2% greater in the MABTHERA-arms compared to control arms: lower respiratory tract infections/pneumonia, abdominal pain upper, muscle spasms, asthenia.

In addition to the events tabulated above, medically significant events reported rarely in the MABTHERA treated population and considered potential reactions to treatment include the following:

General Disorders: Generalised oedema
Respiratory Disorders: Bronchospasm, wheezing, laryngeal oedema
Skin and Subcutaneous Disorders: Angioneurotic oedema, generalised pruritis
Immune system Disorders: Anaphylaxis, anaphylactoid reaction.

Multiple Courses

Multiple courses of treatment are associated with a similar ADR profile to that observed following first exposure. However, worsening of infusion or allergic reactions and failure to B cell deplete following rituximab cannot be excluded in HACA positive patients after repeated exposure to rituximab on the basis of the available data. The incidence of acute infusion reactions following subsequent treatment courses was generally lower than the incidence following the first infusion of MABTHERA.

Laboratory Abnormalities

Hypogammaglobulinaemia (IgG or IgM below the lower limit of normal) has been observed in RA patients treated with MABTHERA.

Events of neutropenia associated with MABTHERA treatment, the majority of which were transient and mild or moderate in severity, were observed in clinical trials in RA patients after the first course of treatment. Neutropenia can occur several months after the administration of MABTHERA.

MabThera® PI 120720
CDS 21.0
Further information on selected, serious adverse drug reactions

Infusion-related Reactions (IRRs)
Symptoms suggesting an acute infusion reaction (pruritis, fever, urticaria/rash, chills, pyrexia, rigors, sneezing, angioneurotic oedema, throat irritation, cough and bronchospasm, with or without associated hypotension or hypertension) were observed in 79/540 (15%) patients following their first exposure to MABTHERA. In a study comparing the effect of glucocorticoid regimen, these events were observed in 5/149 (3%) of patients following their first placebo infusion and 42/192 (22%) of patients receiving their first infusion of 1000 mg MABTHERA. Premedication with IV glucocorticoid significantly reduced the incidence and severity of these events (see PRECAUTIONS – Rheumatoid Arthritis). Of the patients who received 1000 mg MABTHERA without premedication with glucocorticoids, 18/65 (28%) experienced an acute infusion reaction, compared with 24/127 (19%) in patients given IV glucocorticoid premedication, respectively.

In Study 1 (REFLEX) 5/308 (1.6%) patients from the MABTHERA + MTX group and no patients from the placebo + MTX group withdrew from the study due to acute infusion reactions. A reduced number of acute infusion reactions occurred during the second infusion, and none resulted in withdrawal of a patient.

In Study 2 (DANCER) 5/192 (3%) patients in the 2 x 1000 mg MABTHERA + MTX group were withdrawn due to acute infusion reactions. No patients in the placebo or 2 x 500 mg MABTHERA groups withdrew from treatment.

In Study 3 one patient in the 2 x 1000 mg MABTHERA group withdrew due to an acute infusion reaction.

Infections
The rate of infection was approximately 0.9 per patient year in MABTHERA treated patients. The infections consisted mostly of upper respiratory tract infections and urinary tract infections. Clinically significant infections (defined as those which were reported as serious and/or were treated with IV antibiotics) were observed in 68/1039 (7%) of patients treated with MABTHERA compared to 3/107 (3%) of patients treated with only placebo. The rate of clinically significant infection was 0.05 per patient year in MABTHERA treated patients. Clinically significant infections predominantly included those of the lower respiratory, urinary and gastrointestinal tracts. Three clinically significant infections resulted in fatal outcomes, one was considered related to MABTHERA (septic shock) and two unrelated (neutropenic sepsis and bronchopneumonia).

Malignancies
The observed incidence of malignancies following exposure to rituximab (1.6 per 100 person years) lies within the range expected for a population with similar age and gender profile. A total of 26 malignancies have been reported in 22/1039 (2%) patients treated with MABTHERA. The most common types were skin cancer (basal cell carcinoma squamous cell cancer, or melanoma) and breast cancer. Four malignancies (thyroid gland cancer, oligodendroglioma, basal cell carcinoma and malignant melanoma) were assessed by the investigator as being related to trial treatment.
Latency of onset was variable, ranging from 35 to 1324 days. There was no evidence that the incidence of malignancies altered over time, with fourteen malignancies occurring following the first course of MABTHERA, ten following the second course, and two following the third course. Malignancies were reported mainly in patients aged ≥ 60 years (mean 60 years; range 37-80 years).

Additional all exposure data from combined approved and unapproved RA indications

The following all exposure data is sourced from RA studies relating to both approved and unapproved uses of MABTHERA in RA. The registered indication (in severe RA) is supported primarily by data from the REFLEX phase III pivotal study and additionally by data from the DANCER and WA16291 studies. The data presented below is taken from pooled all exposure analyses which included the 3 studies supporting the approved indication, as well as data from their respective open label extension studies, namely WA17531 (REFLEX extension) and WA16855 (DANCER/WA16291 extension). The all exposure analyses also included data from SERENE, SUNRISE, MIRROR, SIERRA and IMAGE studies, all of which support RA indications (early RA or moderate to severe RA) not registered in Australia.

In clinical trials 3095 patients were treated with MABTHERA for RA providing 7198 patient years of observation, with up to > 8 years follow-up and up to 13 courses of MABTHERA received (one patient had received the 1st infusion of the 13th course at the time of data cut-off). Over 750 patients had been followed for > 3 years and 225 patients for > 5 years with 2365, 1581, 1038 and 497 patients receiving ≥ 2, ≥ 3, ≥ 4 and ≥ 5 courses, respectively. (The patient figures refer to the number of patients receiving at least one infusion or part of an infusion for any given course.) Most of the patients who received additional courses did so 24 weeks or more after the previous course and none were retreated sooner than 16 weeks. The rates and types of ADRs reported for subsequent courses of MABTHERA were similar to rates and types seen for a single course of MABTHERA.

Hypophosphataemia and hyperuricaemia
In the overall RA clinical trial programme hypophosphatemia (< 2.0 mg/dl) was observed in 22% patients (688/3083), and hyperuricaemia (> 10 mg/dL) in 13.0% (400/3083) patients. In the majority of cases, hypophosphatemia and hyperuricaemia were transient, occurring at the time of infusion.

Infusion-related Reactions (IRRs)
The most frequent ADRs following receipt of MABTHERA in clinical studies were IRRs. Among the 3095 patients treated with MABTHERA (for up to 13 courses), 1077 (35%) experienced at least one IRR. The vast majority of IRRs were Grade 1 or 2. Less than 1% (14/3095 patients) of patients with RA who received an infusion of MABTHERA at any dose experienced a serious infusion-related reaction. There were no Grade 4 IRRs and no deaths due to IRRs in the clinical studies (see Post-Marketing Experience – Rheumatoid Arthritis). The proportion of Grade 3 events and IRRs leading to withdrawal decreased by course and were rare from course 3 onwards.

Signs and symptoms suggesting an IRR (nausea, pruritus, fever, urticaria/rash, chills, pyrexia, rigors, sneezing, angioneurotic oedema, throat irritation, cough and bronchospasm, with or without associated hypotension or hypertension) were observed in 720/3095 (23%) patients following first infusion of the first exposure to MABTHERA. Premedication with IV
glucocorticoid significantly reduced the incidence and severity of these events (see PRECAUTIONS – Rheumatoid Arthritis).

Infections
The overall rate of infection was approximately 97 per 100 patient years in MABTHERA treated patients. The infections were predominately mild to moderate and consisted mostly of upper respiratory tract infections and urinary tract infections. The rate of serious infections was 4.25 per 100 patient years. The most common serious infections were pneumonia or lower respiratory tract infections, cellulitis, urinary tract infections, gastroenteritis and bronchitis. Fatal serious infections included pneumonia, sepsis, colitis and PML.

In 240 MABTHERA-treated RA patients with active disease, subsequent treatment with a biologic DMARD, the majority of which were TNF antagonists, did not appear to increase the rate of serious infection. Sixteen serious infections were observed in 262.4 patient years (6.10 per 100 patient years) prior to exposure and 12 were observed in 246.5 patient years (4.87 per 100 patient years) after exposure.

Malignancies
The incidence of malignancy (excluding non-melanoma skin cancer) following exposure to MABTHERA in clinical studies (0.8 per 100 patient years) lies within the range expected for an age and gender matched population. A total of 60 confirmed malignancies (excluding non-melanoma skin cancers) have been reported in 59/3095 (2%) patients treated with MABTHERA. The most common types were breast cancer and thyroid cancer.

Latency of onset was variable, ranging from 32 to 1561 days. There was no evidence that the rate of malignancies altered over time or with multiple courses of MABTHERA.

Cardiovascular Events
In clinical trials the rate of serious cardiac reactions was 1.71 per 100 patient years. The most common serious cardiac event was myocardial infarction (MI) with a rate of 0.56 per 100 patient years. Rates did not increase over multiple courses of MABTHERA, and were consistent with those observed in epidemiologic studies of RA patients. Since patients with RA are at increased risk for cardiovascular events compared with the general population, patients with RA should be monitored throughout the infusion and MABTHERA should be discontinued in the event of a serious or life threatening cardiac event (see PRECAUTIONS – Rheumatoid Arthritis).

Immunogenicity
As with all therapeutic proteins, there is a potential for immunogenicity. The observed incidence of antibody (including neutralising antibody) positivity in an assay is highly dependent on several factors including assay sensitivity and specificity, assay methodology, sample handling, timing of sample collection, concomitant medications, and underlying disease. For these reasons, comparison of the incidence of antibodies to MABTHERA with the incidence of antibodies to other products may be misleading.

A total of 392/3095 (12.7%) patients with RA tested positive for HACA at any time after receiving MABTHERA. HACA positivity was not associated with increased infusion reactions or other adverse reactions. Upon further treatment, the proportions of patients with infusion reactions were similar between HACA positive and negative patients, and most reactions were mild to moderate. Two HACA positive patients had serious infusion reactions...
after developing HACA. The clinical relevance of HACA formation in MABTHERA-treated patients is unclear.

Post-Marketing Experience

Non-Hodgkin’s Lymphoma and Chronic Lymphocytic Leukaemia

The reporting frequencies in this section (rare, very rare) are based on estimated marketed exposures and largely data derived from spontaneous reports.

Additional cases of severe infusion-related reactions have been reported during post-marketing use of MABTHERA.

As part of the continuing post-marketing surveillance of MABTHERA safety, the following serious adverse reactions have been observed:

- **Cardiovascular system:** Severe including fatal cardiac events, such as heart failure and myocardial infarction have been observed, mainly in patients with prior cardiac condition and/or cardiotoxic chemotherapy and mostly associated with infusion-related reactions. Vasculitis, predominantly cutaneous, such as leucocytoclastic vasculitis, has been reported very rarely.

- **Blood and lymphatic system:** Rarely the onset of neutropenia has occurred more than four weeks after the last infusion of MABTHERA. Cases of infusion-related acute reversible thrombocytopenia have been reported.

- **In post-marketing:** Studies of rituximab in patients with Waldenstrom’s macroglobulinaemia, transient increases in serum IgM levels have been observed following treatment initiation, which may be associated with hyperviscosity and related symptoms. The transient IgM increase usually returned to at least baseline level within 4 months.

- **Respiratory system:** Fatal bronchiolitis obliterans and pneumonitis (including interstitial pneumonitis) have been reported. Respiratory failure/insufficiency and pulmonary infiltrates in the context of infusion-related reactions. In addition to pulmonary events associated with infusions, interstitial lung disease, some with fatal outcome, has been reported.

- **Skin and appendages:** Severe bullous skin reactions including fatal cases of toxic epidermal necrolysis have been reported rarely.

- **Nervous system:** Cases of posterior reversible encephalopathy syndrome (PRES) / reversible posterior leukoencephalopathy syndrome (RPLS) have been reported. Signs and symptoms include visual disturbance, headache, seizures and altered mental status, with or without associated hypertension. A diagnosis of PRES/RPLS requires confirmation by brain imaging. The reported cases had recognised risk factors for PRES/RPLS, including the patients underlying disease, hypertension, immunosuppressive therapy and/or chemotherapy. Cases of cranial neuropathy with or without peripheral neuropathy have been reported rarely. Signs and symptoms of cranial neuropathy, such as severe vision loss, hearing loss, loss of other senses and facial nerve palsy, occurred at various times up to several months after completion of MABTHERA therapy.
- **Body as a whole:** Serum sickness-like reactions have been reported rarely.

- **Infections and infestations:** Cases of hepatitis B reactivation have been reported in subjects receiving MABTHERA in combination with cytotoxic chemotherapy (see PRECAUTIONS). Other serious viral infections, either new, reactivation or exacerbation, some of which were fatal, have been reported with rituximab treatment. The majority of patients had received rituximab in combination with chemotherapy or as part of a haematopoietic stem cell transplant. Examples of these serious viral infections are infections caused by the herpes viruses (cytomegalovirus (CMV), Varicella zoster virus and Herpes simplex virus), JC virus (progressive multifocal leukoencephalopathy (PML) see BOXED WARNING) and Hepatitis C virus. Progression of Kaposi’s sarcoma has been observed in rituximab-exposed patients with pre-existing Kaposi’s sarcoma. These cases occurred in non-approved indications and the majority of patients were HIV (Human Immunodeficiency Virus)-positive.

- **Gastro-intestinal system:** Gastro-intestinal perforation, in some cases leading to death, has been observed in patients receiving rituximab in combination with chemotherapy for non-Hodgkin’s lymphoma.

- **Renal and urinary system:** Renal failure has been reported.

Rheumatoid Arthritis

In addition to ADRs seen in RA clinical trials for MABTHERA (see ADVERSE EFFECTS - Experience from Clinical Trials in Rheumatoid Arthritis), progressive multifocal leukoencephalopathy (PML), serum sickness-like reaction, reactivation of hepatitis B and severe IRRs with fatal outcome infection have been reported during post-marketing experience. Neutropenic events, including severe late onset and persistent neutropenia, have been reported rarely in the post-marketing setting, some of which were associated with fatal infections.

Use in Children

Hypogammaglobulinaemia has been observed in paediatric patients treated with MABTHERA (see PRECAUTIONS).

DOSAGE AND ADMINISTRATION

MABTHERA may be administered in an outpatient setting. MABTHERA should be administered in an environment where full resuscitation facilities are immediately available, and under the close supervision of an experienced healthcare professional.

Dosage

Non-Hodgkin’s Lymphoma

Premedication, consisting of an analgesic/antipyretic such as paracetamol and an antihistamine such as diphenhydramine should always be administered 30 to 60 minutes before each infusion of MABTHERA. Premedication with glucocorticoids should also be considered, particularly if MABTHERA is not given in combination with steroid-containing chemotherapy.
Relapsed or refractory Low Grade or Follicular non-Hodgkin's lymphoma

The recommended dosage of MABTHERA when used in monotherapy is 375 mg/m\(^2\) administered as an intravenous infusion once weekly for four weeks.

The recommended dosage of MABTHERA when used in combination with CHOP chemotherapy is 375 mg/m\(^2\) administered on day 1 of each chemotherapy cycle (6 cycles).

Previously untreated stage III/IV Follicular non-Hodgkin’s lymphoma

The recommended dosage of MABTHERA in combination with chemotherapy is 375 mg/m\(^2\) administered on day 1 of each chemotherapy cycle for up to 8 cycles as induction therapy.

MABTHERA should be administered prior to the administration of chemotherapy. Any infusion related reactions should have settled before chemotherapy is instituted.

Maintenance treatment

Patients who have responded to induction treatment may receive maintenance therapy with MABTHERA given at 375 mg/m\(^2\) body surface area once every 3 months until disease progression or for a maximum period of two years.

Diffuse large B-cell non-Hodgkin's lymphoma

The recommended dosage for MABTHERA in combination with CHOP chemotherapy is 375 mg/m\(^2\), administered as an intravenous infusion on day 1 of each chemotherapy cycle, for up to 8 cycles.

Chronic Lymphocytic Leukaemia

Premedication, consisting of an analgesic/antipyretic such as paracetamol and an antihistamine such as diphenhydramine should always be administered 30 to 60 minutes before each infusion of MABTHERA. Premedication with glucocorticoids should also be considered, particularly if MABTHERA is not given in combination with steroid-containing chemotherapy.

The recommended dosage of MABTHERA in combination with chemotherapy is 375 mg/m\(^2\) administered on day 1 of the first treatment cycle followed by 500 mg/m\(^2\) administered on day 1 of each subsequent cycle, for a total of 6 cycles (see CLINICAL TRIALS). The chemotherapy should be given after the infusion of MABTHERA.

Prophylaxis with adequate hydration and administration of uricostatics starting 48 hours prior to the start of therapy is recommended for CLL patients to reduce the risk of tumour lysis syndrome. For CLL patients whose lymphocyte counts are >25 x10\(^9\)/L it is recommended to administer prednisone/prednisolone 100 mg IV shortly before infusion with MABTHERA to decrease the rate and severity of acute infusion reactions and/or cytokine release syndrome.

Dosage adjustments during treatment

No dose reductions of MABTHERA are recommended. When MABTHERA is given in combination with chemotherapy, standard dose reductions for the chemotherapeutic drugs should be applied.

First Infusion: The recommended initial rate of infusion is 50 mg/h. If hypersensitivity or infusion-related events do not occur, escalate the infusion rate in 50 mg/h increments every 30
minutes, to a maximum of 400 mg/h. If hypersensitivity or an infusion-related event develops, the infusion should be temporarily slowed or interrupted (see PRECAUTIONS). The infusion can continue at one-half the previous rate upon improvement of patient symptoms.

Subsequent Infusions: Subsequent MABTHERA infusions can be administered at an initial rate of 100 mg/h and increased by 100 mg/h increments at 30-minute intervals, to a maximum of 400 mg/h.

Rheumatoid Arthritis
Premedication consisting of an analgesic/antipyretic such as paracetamol and an antihistamine such as diphenhydramine should always be administered 30 to 60 minutes before each infusion of MABTHERA. Premedication with glucocorticoids should also be administered in order to reduce the frequency and severity of IRRs. Patients should receive 100 mg IV methylprednisolone to be completed 30 minutes prior to each MABTHERA infusion (see PRECAUTIONS – Rheumatoid Arthritis).

A course of MABTHERA consists of two 1000 mg IV infusions. The recommended dosage of MABTHERA is 1000 mg by intravenous infusion followed by a second 1000 mg intravenous infusion two weeks later. The course of MABTHERA is given concomitantly with the dose of MTX tolerated by the patient. The minimal effective dose is not yet known.

Background therapy with glucocorticoids, salicylates, nonsteroidal anti-inflammatory drugs, or analgesics can be continued during treatment with MABTHERA.

Disease activity should be regularly monitored. Patients may receive further courses of treatment, based on signs and symptoms of disease. In clinical studies, no patient received a second course of MABTHERA treatment within 16 weeks of the first infusion of the first course. The time interval between courses was variable, with the majority of patients who received additional courses doing so 6-12 months after the previous course. Some patients required even less frequent retreatment. The efficacy and safety of further courses is comparable to the first course.

Human anti chimeric antibodies (HACA) develop in some patients after the first course of MABTHERA. The presence of HACA may be associated with the worsening of infusion or allergic reactions after the second infusion of subsequent course. Furthermore, in one case with HACA, failure to deplete B-cells after receipt of further treatment courses has been observed. Thus, the benefit/risk balance of therapy with MABTHERA should be carefully considered before administering subsequent courses of MABTHERA. If a repeat course of treatment is considered it should not be given at an interval less than 16 weeks.

First infusion of each course: The recommended initial rate for infusion is 50 mg/h; after the first 30 minutes, it can be escalated in 50 mg/h increments every 30 minutes, to a maximum of 400 mg/h.

Second infusion of each course: Subsequent doses of MABTHERA can be infused at an initial rate of 100 mg/h, and increased by 100 mg/h increments at 30 minutes intervals, to a maximum of 400 mg/h.
Special Populations

Elderly: No dose adjustment is required in elderly patients (aged > 65 years).

Preparation
MABTHERA vials do not contain an antimicrobial agent or preservative; therefore, care must be taken to ensure the sterility of the vials and prepared solution. Each vial should be used once only and any residue discarded.

Aseptically withdraw the necessary amount of MABTHERA and dilute to a calculated concentration between 1 mg/mL to 4 mg/mL of rituximab into an infusion bag containing either 0.9% sodium chloride or 5% dextrose in water. To mix the solution, gently invert the bag to avoid foaming. Parenteral drug products should be inspected visually for particulate matter and discolouration prior to administration.

To reduce microbiological hazard, prepared infusion solutions of MABTHERA should be used as soon as practicable after dilution. If necessary, the prepared solutions may be stored in the refrigerator (2°C to 8°C) for up to 24 hours. This timeframe allows for the temporary interruption of the infusion and subsequent recommencement if the patient has an infusion reaction (see Administration below).

No incompatibilities between MABTHERA and polyvinyl chloride or polyethylene bags have been observed.

Administration
The MABTHERA solution for infusion should be administered intravenously through a dedicated line.

As with all parenteral products, appropriate aseptic technique should be used during the administration of MABTHERA. Do not administer as an intravenous push or bolus. Hypersensitivity reactions may occur whenever protein solutions such as MABTHERA are administered (see PRECAUTIONS).

OVERDOSAGE
There has been no experience of overdosage in human clinical trials. Single doses higher than 1000 mg have not been tested in controlled clinical trials. The highest dose tested to date is 5 g in patients with CLL. No additional safety signals were identified. Patients who experience overdose should have immediate interruption or reduction of their infusion and be closely supervised. Consideration should be given to the need for regular monitoring of blood cell count and for increased risk of infections while patients are B cell-depleted.

Treatment of overdose should also consist of general supportive measures.

Contact the Poisons Information Centre for advice on management of overdosage.
PRESENTATION AND STORAGE

Packs of 2:
- Single-use vials containing concentrated solution for dilution and intravenous infusion
 100 mg/10 mL

Pack of 1:
- Single-use vial containing concentrated solution for dilution and intravenous infusion
 500 mg/50 mL

Rituximab 100 mg (10 mL) or 500 mg (50 mL) is formulated in a 7.35 mg/mL sodium citrate
buffer containing 0.7 mg/mL polysorbate 80, 9.0 mg/mL sodium chloride and sterile water for
injection. The pH is adjusted to 6.5 with sodium hydroxide and/or hydrochloric acid.

Storage
MABTHERA vials must be refrigerated between 2 °C to 8 °C. Do not freeze MABTHERA
vials. MABTHERA vials must be protected from direct sunlight. Do not use beyond the
expiry date stamped on the carton/vial. MABTHERA vials should be used once only and any
unused portion left in the vials should be discarded.

Disposal of Medicines
The release of medicines into the environment should be minimised. Medicines should not be
disposed of via wastewater and disposal through household waste should be avoided. Unused
or expired medicine should be returned to a pharmacy for disposal.

POISON SCHEDULE
Prescription only medicine- Schedule 4

SPONSOR
Roche Products Pty Limited
ABN 70 000 132 865
4-10 Inman Road
Dee Why NSW 2099
AUSTRALIA

Customer Enquires: 1800 233 950

Date of TGA approval: 15 August 2011

Date of most recent amendment: 20 July 2012