Roxithromycin is a semi-synthetic macrolide antibiotic. Each Roximycin film-coated tablet contains either 150 mg or 300 mg of roxithromycin as the active ingredient. Roximycin film-coated tablets also contain the following inactive excipients: povidone, hydroxypropylcellulose, starch – maize, poloxamer 188, silica – colloidal anhydrous, talc – purified, magnesium stearate, glucose anhydrous and OPADRY complete film coating system OY-S-58918 White.
Pharmacology

Pharmacokinetics

Absorption: Roxithromycin is absorbed after oral administration with an absolute bioavailability of approximately 50%. Peak plasma concentrations following administration of 150 mg and 300 mg film-coated tablets are achieved in young and elderly adult patients approximately 1 to 2 hours post-dose. As food intake decreases absorption, Roxithromycin should be administered at least 15 minutes before food or, alternatively, on an empty stomach (i.e. more than 3 hours after a meal).

Absorption is not linear; with increasing doses in the range 150 mg to 300 mg, peak plasma levels and AUC do not increase in proportion to the dose.

After repeated administration of 2.5 mg/kg every 12 hours to children, the average peak plasma concentration at steady state was 9 mg/L and the AUC was 61 mg.h/L.

Following administration of a single oral dose of roxithromycin 150 mg to healthy young adults, the mean peak plasma concentration was 6.6 mg/L and the AUC was 69 mg.h/L.

In elderly patients, the mean peak plasma concentration following a single 150 mg dose was 9.1 mg/L and the AUC was 148 mg.h/L.

Following administration of a single oral dose of roxithromycin 300 mg to healthy young adults, the mean peak plasma concentration was 11.7 mg/L and the AUC was 161 mg.h/L.

In elderly patients, the mean peak plasma concentration following a single 300 mg dose was 10.8 mg/L and the AUC was 197 mg.h/L.

Distribution: Roxithromycin is 92-96% bound to plasma proteins (principally alpha-1-acid glycoprotein, but also albumin) at concentrations less than 4.2 mg/L. The binding is saturable: in subjects with normal plasma levels of alpha-1-acid glycoprotein, the extent of binding decreases when plasma concentrations of roxithromycin exceed 4.2 mg/L. At a plasma concentration of 8.4 mg/L, approximately 87% of the drug is protein bound.

Roxithromycin is highly concentrated in polymorphonuclear leucocytes and macrophages, where levels 30 times those in serum have been reported.

Elimination: The mean half-life of roxithromycin is approximately 12 hours in young adults and 20 hours in children. The apparently longer half-life in children does not cause excessive accumulation: Cmin and AUC values are comparable for adults and children.

The half-life is prolonged to 25 hours in adults with impaired hepatic function and 18 hours in adults with renal insufficiency.

The mean half-life in elderly patients is approximately 27 hours.

Roxithromycin undergoes limited metabolism in the body, presumably in the liver. The major metabolite is descladinose roxithromycin. Two minor metabolites have also been identified. Plasma levels of roxithromycin are approximately twice those of all metabolites; a similar ratio is seen in the urine and faeces.

Excretion: Approximately 7% of a dose is excreted in the urine and 13% is eliminated via the lungs. Faecal excretion, which represents the unabsorbed fraction and the small proportion excreted by the liver, accounts for approximately 53% of the dose. The fate of the remainder is unknown.

When roxithromycin plasma levels are above 4.2 mg/L, renal clearance increases because reduced plasma protein binding (see Distribution) causes increased levels of unbound roxithromycin which may be excreted by the kidneys.
Microbiology: Roxithromycin is bacteriostatic at low concentrations and bactericidal at high concentrations. It binds to the 50S subunit of the 70S ribosome thereby disrupting bacterial protein synthesis.

A prolonged post antibiotic effect has been observed with roxithromycin. Whilst the clinical significance of this remains uncertain, it supports the rationale for once daily dosing. Although clinical data has demonstrated the efficacy and safety of once daily dosing in adults, this has not been demonstrated in children.

At plasma concentrations achieved with the recommended therapeutic doses, roxithromycin has been demonstrated to have *in vitro* and clinical activity against the following microorganisms:

Streptococcus pneumoniae, Streptococcus pyogenes, Mycoplasma pneumoniae, Moraxella catarrhalis, Ureaplasma urealyticum, Chlamydia spp.

Roxithromycin has been demonstrated to have clinical activity against the following microorganisms which are partially sensitive *in vitro* to roxithromycin:

Haemophilus influenzae, Staphylococcus aureus (except Methicillin Resistant Staphylococcus Aureus (MRSA)).

The following strains of microorganisms are resistant:

Multiresistant Staphylococcus aureus, Enterobacteriaceae, Pseudomonas spp., Acinetobacter spp.

Susceptibility Tests: Dilution or diffusion techniques – either quantitative (MIC) or breakpoint, should be used following a regularly updated, recognised and standardised method (eg. NCCLS). Standardised susceptibility test procedures require the use of laboratory control microorganisms to control the technical aspects of the laboratory procedures.

A report of “Susceptible” indicates that the pathogen is likely to be inhibited if the antimicrobial compound in the blood reaches the concentrations usually achievable. A report of “Intermediate” indicates that the result should be considered equivocal, and if the microorganism is not fully susceptible to alternative, clinical feasible drugs, the test should be repeated. This category implies possible clinical applicability in body sites where the drug is physiologically concentrated or in situations where high dosage of drug can be used. This category also provides a buffer zone, which prevents small-uncontrolled technical factors from causing major discrepancies in interpretation. A report of “Resistant” indicates that the pathogen is not likely to be inhibited if the antimicrobial compound in the blood reaches the concentrations usually achievable; other therapy should be selected.

Note: The prevalence of resistance may vary geographically for selected species and local information on resistance is desirable, particularly when treating severe infections.

Indications

Adults: Roxithromycin is indicated for the treatment of the following types of mild to moderately severe infections in adults caused by or likely to be caused by susceptible micro-organisms:

* Upper respiratory tract infection: acute pharyngitis, tonsillitis, sinusitis.
* Lower respiratory tract infection: acute bronchitis and acute exacerbations of chronic bronchitis; community acquired pneumonia.
* Skin and skin structure infections.
* Non-gonococcal urethritis.

Children: Roxithromycin 150 mg tablets are indicated for the treatment of the following mild to moderately severe infections in children caused by or likely to be caused by susceptible micro-organisms:

* Acute pharyngitis
* Acute tonsillitis
* Impetigo
Appropriate culture and sensitivity tests should be performed when necessary to determine an organism's susceptibility and thus treatment suitability. Therapy with roxithromycin may be initiated before results of these tests are known; once results become available, appropriate therapy should be continued.

Contra-indications

* Known hypersensitivity to macrolides, including erythromycin.
* Severely impaired hepatic function (see Precautions).
* Concomitant therapy with vasoconstrictive ergot alkaloids (see Interactions).

Precautions

* **Impaired hepatic and renal function:** The safety of roxithromycin has not been demonstrated in patients with impaired hepatic or renal function. Caution should be exercised if roxithromycin is administered to patients with impaired hepatic or renal function. If administered to patients with severe impaired hepatic function (eg. hepatic cirrhosis with jaundice and/or ascites), consideration should be given to reducing the daily dosage to half the usual dosage.

Prolonged or repeated use of antibiotics including roxithromycin may result in superinfection by resistant organisms. In the event of superinfection, roxithromycin should be discontinued and appropriate therapy instituted.

When indicated, incision, drainage or other appropriate surgical procedures should be performed in conjunction with antibiotic therapy.

Antibiotic associated pseudomembranous colitis has been reported with many antibiotics. A toxin produced by *Clostridium difficile* appears to be the primary cause. The severity of the colitis may range from mild to life threatening. It is important to consider this diagnosis in patients who develop diarrhoea or colitis in association with antibiotic use (this may occur up to several weeks after cessation of antibiotic therapy). Mild cases usually respond to drug discontinuation alone. However, in moderate to severe cases, appropriate therapy with a suitable oral antibacterial agent effective against *Clostridium difficile* should be considered. Fluids, electrolytes and protein replacement therapy should be provided when indicated.

Drugs which delay peristalsis, eg. opiates and diphenoxylate with atropine (Lomotil), may prolong and/or worsen the condition and should not be used.

Roxithromycin, like erythromycin, has been shown in vitro to elicit a concentration - dependent lengthening in cardiac action potential duration. Such an effect is manifested only at supra - therapeutic concentrations. Accordingly, the recommended doses should not be exceeded.

Use in Children

In young animal studies, high oral doses of roxithromycin were associated with bone growth plate abnormalities. However no abnormalities were observed in the animals at doses resulting in unbound plasma roxithromycin concentrations that were 10 to 15 times higher than the unbound concentration measured in children receiving the therapeutic dose. The maintenance of such safety margins is primarily dependent on high affinity binding of roxithromycin to plasma alpha-1-acid glycoprotein and will be compromised by any circumstances attenuating the extent of this binding. It is recommended that the approved paediatric dosage regimen (ie. 5 to 8 mg/kg/day for a maximum of 10 days) be adhered to strictly.

Neutropenia was observed in children treated with roxithromycin. 31.6% of 402 children in clinical trials had a neutrophil count below the lower limit of the normal range (3,500/mm3) at the conclusion of therapy with roxithromycin. Of these, 4% had a neutrophil count of less than 1,500/mm3 and 1.2% had a count of less than 1,000/mm3. It is not known whether this is an effect of the drug or whether it reflects a normal fluctuation of the neutrophil count or a response to infection in children.
Use in Pregnancy (Category B1)

Reproductive studies in rats, mice and rabbits at doses of 100, 400 and 135 mg/kg/day, respectively, did not demonstrate evidence of developmental abnormalities. In rats, at doses above 180 mg/kg/day, there was evidence of embryotoxicity and maternotoxicity. The safety of roxithromycin for the human foetus has not been established.

Australian categorisation definition of B1: Drugs which have been taken by only a limited number of pregnant women and women of child bearing age, without an increase in the frequency of malformation or other direct or indirect harmful effects on the human foetus having been observed. Studies in animals have not shown evidence of an increased occurrence of foetal damage.

Use in Lactation

Small amounts of roxithromycin are excreted in the breast milk. Breast feeding or treatment of the mother should be discontinued as necessary.

Use in the Elderly

No dosage adjustment is required in elderly patients.

Carcinogenesis, Mutagenesis and Effects on Fertility

Long term studies in animals have not been performed to evaluate the carcinogenic potential of roxithromycin. Roxithromycin has shown no mutagenic potential in standard laboratory tests for gene mutation and chromosomal damage.

There was no effect on the fertility of rats treated with roxithromycin at oral doses up to 180 mg/kg/day.

Interactions

Roxithromycin has a much lower affinity for cytochrome P450 than erythromycin and consequently has fewer interactions. Interactions may be observed, however, with drugs that bind to alpha-1-acid glycoprotein, such as disopyramide.

Roxithromycin does not appear to interact with oral contraceptives, prednisolone, carbamazepine, ranitidine or antacids.

Theophylline: A study in normal subjects concurrently administered roxithromycin and theophylline has shown some increase in plasma concentration of the latter. While a change in dosage is usually not required, patients with high levels of theophylline at commencement of treatment should have levels monitored.

Ergot alkaloids: Reactions of ergotism with possible peripheral necrosis have been reported after concomitant therapy of macrolides with vasoconstrictive ergot alkaloids, particularly ergotamine and dihydroergotamine. Because a clinical interaction with roxithromycin cannot be excluded, administration of roxithromycin to patients taking ergot alkaloids is contraindicated.

Disopyramide: An in-vitro study has shown that roxithromycin can displace protein bound disopyramide; such an effect in vivo could result in increased serum levels of disopyramide. Consequently ECG and, if possible, disopyramide serum levels should be monitored.

Terfenadine: Some macrolide antibiotics (eg. erythromycin) may increase serum levels of terfenadine. This can result in severe cardiovascular adverse events, including QT prolongation, Torsades de Pointes and other ventricular arrhythmias. Such a reaction has not been documented with roxithromycin which has a much lower affinity for cytochrome P450 than erythromycin. However, in the absence of a systematic interaction study, concomitant administration of roxithromycin and terfenadine is not recommended.
Astemizole, cisapride, pimozide: Other drugs, such as astemizole, cisapride or pimozide, which are metabolized by the hepatic isozyme CYP3A4, have been associated with QT interval prolongation and/or cardiac arrhythmias (typically Torsades de Pointes) as a result of an increase in their serum level subsequent to interaction with significant inhibitors of this isozyme, including some macrolide antibiotics. Although roxithromycin has no or limited ability to complex CYP3A4 and therefore to inhibit the metabolism of other drugs processed by this isozyme, a potential for clinical interaction of roxithromycin with the above mentioned drugs cannot be either ascertained or ruled out in confidence; therefore, concomitant administration of roxithromycin and such drugs is not recommended.

Warfarin: While no interaction was observed in volunteer studies, roxithromycin appears to interact with warfarin. Increases in prothrombin time (international normalized ratio; INR) have been reported in patients treated concomitantly with roxithromycin and warfarin or the related Vitamin K antagonist phenprocoumon, and severe bleeding episodes have occurred as a consequence.

Digoxin and other cardiac glycosides: A study in healthy volunteers has shown that roxithromycin may increase the absorption of digoxin. This effect, common to other macrolides, may very rarely result in cardiac glycoside toxicity. This may be manifested by symptoms such as nausea, vomiting, diarrhoea, headache or dizziness; cardiac glycoside toxicity may also elicit heart conduction and/or rhythm disorders. Consequently, in patients treated with roxithromycin and digoxin or another cardiac glycoside, ECG and, if possible, the serum level of the cardiac glycoside should be monitored; this is mandatory if symptoms which may suggest cardiac glycoside overdosage occur.

Midazolam: Roxithromycin, like other macrolides, may increase the area under the midazolam concentration-time curve and the midazolam half-life; therefore the effects of midazolam may be enhanced and prolonged in patients treated with roxithromycin. There is no conclusive evidence for an interaction between roxithromycin and triazolam.

Cyclosporin: A slight increase in plasma concentrations of cyclosporin A has been observed. This does not generally necessitate altering the usual dosage.

Adverse Events

Roxithromycin is generally well tolerated. In clinical trials, treatment discontinuation due to adverse reactions occurred in only 1.2% of adult patients and 1.0% of children. The following side-effects or serious adverse events possibly associated with roxithromycin have been reported:

Gastrointestinal: Nausea, vomiting, epigastric pain, diarrhoea (very rarely containing blood), anorexia, flatulence, acute pancreatitis. In clinical studies, the incidence of gastrointestinal events was higher with the 300 mg once daily dosage regimen than with 150mg twice daily.

Hypersensitivity: Urticaria, rash, pruritus, angioedema. Rarely, serious allergic reactions may occur such as asthma, bronchospasm, anaphylactic-like reactions, purpura, glottic oedema, generalised oedema, erythema multiforme, exfoliative dermatitis, Stevens-Johnson syndrome.

Hepatic: Moderate increase in serum transaminases, AST and ALT and/or alkaline phosphatase levels have been observed and are somewhat more likely to occur in the elderly (> 65 years of age). Acute cholestatic hepatitis and acute hepatocellular injury are rarely reported.

Hematological effects: Transient eosinophilia and thrombocytosis have been reported in patients receiving roxithromycin 150 mg twice a day for 10 days.

Dermatological: Mild itching (1 to 5%), nail discoloration.

Others: Headache, dizziness, paraesthesia, tinnitus, malaise, moniliasis, pancreatitis, disorders of taste and/or smell.
Dosage and Administration

Adults: Roxithromycin should be taken at least 15 minutes before food or on an empty stomach (i.e. more than 3 hours after a meal).

The recommended dosage is 300 mg per day which may be taken according to one of the following alternative dosage regimens:

<table>
<thead>
<tr>
<th></th>
<th>Roximycin 300mg tablets</th>
<th>Roximycin 150mg tablets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usual dosage</td>
<td>One tablet daily</td>
<td>One tablet twice daily</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or Two tablets once daily</td>
</tr>
<tr>
<td>Elderly</td>
<td>One tablet daily</td>
<td>One tablet twice daily</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or Two tablets once daily</td>
</tr>
<tr>
<td>Impaired renal function</td>
<td>One tablet daily</td>
<td>One tablet twice daily</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or Two tablets once daily</td>
</tr>
</tbody>
</table>

For atypical pneumonia, the recommended dosage is one 150 mg tablet twice daily.

Roximycin 150 mg and 300 mg film-coated tablets must be swallowed whole with a drink.

The usual duration of treatment is 5 to 10 days depending on the indication and clinical response. Streptococcal throat infections require at least 10 days of therapy. A small proportion of patients with non-gonococcal genital infections may require 20 days for complete cure.

Children: The recommended dose and duration of treatment should NOT be exceeded in children (see Precautions).

Roximycin should be taken at least 15 minutes before food or on an empty stomach (i.e. more than 3 hours after a meal).

Roximycin is administered twice daily at a dose of 5 to 8 mg/kg per day.

Note: The 150 mg and 300 mg film-coated tablets must be swallowed whole with a drink.

The usual duration of treatment is 5 to 10 days depending on the indication and clinical response. Streptococcal throat infections require 10 days of therapy. The duration of treatment should not exceed 10 days.

Overdosage

In case of overdosage, gastric lavage may remove residual drug in the stomach. Symptomatic treatment should be provided as required. There is no specific antidote.

Presentation and storage conditions

Roximycin 150 mg: White, round, film-coated, biconvex tablets, embossed “150” “R” on one side and “G” on the other. Blister packs of 10.

Roximycin 300 mg: White, round, film-coated, biconvex tablets, embossed “300” “R” on one side and “G” on the other. Blister packs of 5.

Store below 25°C.
Poison schedule of the medicine

S4 (Prescription Only Medicine)

Name and Address of the Sponsor

Alphapharm Pty Limited
Chase Building 2
Wentworth Park Road
Glebe NSW 2037
ABN 93 002 359 739

www.alphapharm.com.au

Date of approval

Approved by the Therapeutic Goods Administration on 2 March 2004.

Date of most recent amendment: 29 March 2006.