NAME OF THE MEDICINE

VALDOXAN
Agomelatine 25mg

DESCRIPTION

The active component of VALDOXAN is agomelatine which has the chemical name: N-[2-(7-methoxy-1-naphthyl)ethyl] acetamide. Agomelatine is practically insoluble in purified water (<0.1 mg/mL) but freely soluble (>100 mg/mL) in various organic solvents (96% ethanol, methanol, methylene chloride). Agomelatine has no asymmetric carbon atom.

CAS Registry Number: 138112-76-2

Molecular formula: C_{15}H_{17}NO_{2} (MW = 243.3).

Chemical structure:

![Chemical Structure](image)

Excipients: Lactose, starch - maize, povidone, sodium starch glycollate, stearic acid, magnesium stearate, silica - colloidal anhydrous, hypromellose, iron oxide yellow (CI77492), glycerol, macrogol 6000, and titanium dioxide (CI77891), shellac, indigo carmine (CI73015), propylene glycol.

PHARMACOLOGY

Pharmacodynamics

Pharmacotherapeutic group: Other antidepressants (ATC-code: NO6AX22)

VALDOXAN (agomelatine) is a melatonin receptor (MT₁ and MT₂) agonist and 5-HT₂C receptor antagonist. VALDOXAN (agomelatine) has shown an antidepressant-like effect in animal models of depression (learned helplessness test, despair test, chronic mild stress), in models with circadian rhythm desynchronisation and in models related to stress and anxiety.

In vitro studies indicate that VALDOXAN (agomelatine) has no effect on monoamine uptake and no affinity for α or β adrenergic, histaminergic, cholinergic, dopaminergic, or benzodiazepine receptors. VALDOXAN (agomelatine) has no influence on the extracellular levels of serotonin and increases dopamine and noradrenaline release specifically in the prefrontal cortex. These properties may explain why, compared with other antidepressants, it has less gastrointestinal (e.g. vomiting, constipation) and sexual function (e.g. libido decrease) side effects, and no cardiovascular side effects in clinical trials.
In humans, VALDOXAN (agomelatine) has positive phase shifting properties; it induces a phase advance of sleep, body temperature decline and melatonin onset.

VALDOXAN (agomelatine) resynchronises circadian rhythms in animal models of circadian rhythm disruption.

In depressed patients, treatment with VALDOXAN (agomelatine) 25mg increased slow wave sleep without modification of REM (Rapid Eye Movement) sleep amount or REM latency. VALDOXAN (agomelatine) 25mg also induced an advance of the time of sleep onset and of minimum heart rate. From the first week of treatment, onset of sleep and the quality of sleep were significantly improved without daytime clumsiness as assessed by patients.

At therapeutic doses, in healthy volunteers, VALDOXAN (agomelatine) preserves vigilance and memory, with no sedation in the morning following drug intake.

Cardiovascular

In clinical studies, VALDOXAN had no affect on QT interval and no clinically-significant affect on heart rate, blood pressure and ECG tracings

Body weight

VALDOXAN (agomelatine) had no affect on body weight in clinical and non-clinical studies.

Withdrawal / Discontinuation

The abrupt discontinuation of VALDOXAN (agomelatine) was evaluated in a specific active control study (CL3-030) using the Discontinuation Emergent Signs and Symptoms (DESS) check-list. Patients with major depression were treated under double-blind conditions with VALDOXAN (agomelatine) 25mg or paroxetine 20mg over a twelve week period. Only those who remitted at week 8 and sustained that remission until week 12 were randomised to placebo or the initial active treatment for a two-week double-blind period. Patients discontinued from VALDOXAN (agomelatine) to placebo were compared to those who continued treatment on VALDOXAN (agomelatine) and, likewise for the active control paroxetine.

The abrupt discontinuation of VALDOXAN (agomelatine) was not associated with discontinuation symptoms [p=0.250 for difference between the VALDOXAN (agomelatine) and placebo groups]. The sensitivity of the study was demonstrated by the presence of significant emergent discontinuation symptoms following the abrupt discontinuation of treatment with the active control paroxetine [p<0.001 for difference between the paroxetine and placebo groups].

Sexual function

No deleterious affect on sexual function (SEX-FX total score and SEX-FX sub-scores and items) was observed during VALDOXAN (agomelatine) 50mg treatment over 12 or 24 week treatment periods in a specific sexual dysfunction comparative study in remitted depressed patients. There was a numerical trend towards less sexual emergent dysfunction on VALDOXAN (agomelatine) 50mg than venlafaxine 150mg for SEX-FX drive arousal or orgasm scores but statistical separation was not achieved.

A separate pooled analysis of studies using the Arizona Sexual Experience Scale (ASEX) showed that VALDOXAN (agomelatine) was not associated with sexual dysfunction. In healthy volunteers VALDOXAN (agomelatine) did not affect sexual function, in contrast to paroxetine.
Pharmacokinetics

Absorption and bioavailability

VALDOXAN (agomelatine) is rapidly and well (≥80%) absorbed after oral administration. The peak plasma concentration is reached within 1 to 2 hours after administration of VALDOXAN (agomelatine). Absolute bioavailability is low (approximately 1% at the therapeutic oral dose), and is highly variable due to the first pass effect and the inter-individual differences of CYP1A2 activity. The bioavailability is increased in women compared to men. Although not clinically relevant, the bioavailability is increased by intake of oral contraceptives and reduced by smoking. In the therapeutic dose-range, VALDOXAN (agomelatine) exposure appears to increase proportionally with dose with saturation of the first pass effect occurring at supra-therapeutic doses (from 200 to 1200mg).

Food intake (standard meal or high fat meal) reduced the peak concentration (Cmax) by approximately 20 – 30% but did not modify overall absorption or bioavailability. The variability is increased with high fat food.

Distribution

Steady state volume of distribution is about 35L. Plasma protein binding is 95% irrespective of concentration and is not modified with age and in patients with renal impairment but the free fraction is doubled in patients with hepatic impairment.

Biotransformation

Following oral administration, VALDOXAN (agomelatine) is rapidly oxidized mainly by the hepatic cytochromes CYP1A2 (90%) and CYP2C9/CYP2C19 (10%). The major metabolites, hydroxylated and demethylated agomelatine, are not pharmacologically active and are rapidly conjugated and eliminated in the urine.

Elimination

Elimination is rapid. The mean plasma half-life is between 1 and 2 hours. Clearance is high (about 1100mL/min) and essentially metabolic. Excretion is mainly urinary (80%) and corresponds to metabolites. Urinary excretion of the unchanged compound is negligible. Pharmacokinetics remained unchanged following repeated administration.

Special Populations

Severe renal impairment: In subjects with severe renal impairment the pharmacokinetic parameters Cmax and AUC were slightly higher than in healthy subjects. However, due to the high inter-individual variability of VALDOXAN (agomelatine) pharmacokinetics, this result was not clinically relevant. Renal impairment did not affect the protein binding of VALDOXAN (agomelatine).

Hepatic Impairment: Following a single oral dose of 25mg VALDOXAN (agomelatine) in patients with hepatic impairment, Cmax increased by a factor of ~60 and ~110, while AUC increased by ~70-times and ~140-times, in mild (Child-Pugh score of 5 or 6) and moderate (Child-Pugh score of 7 to 9) hepatic impairment, respectively compared to healthy subjects. Both mild and moderate liver impairment increased the half-life of VALDOXAN (agomelatine) by a factor of ~3. The unbound fraction of VALDOXAN (agomelatine) was also increased in subjects with hepatic insufficiency. The inter-individual variability decreased with mild hepatic impairment, with a further decrease in moderate hepatic impairment, suggesting a progressive saturation of the hepatic first-pass effect. VALDOXAN (agomelatine) is therefore contraindicated in patients with hepatic impairment (see CONTRAINDICATIONS section).
Gender, smoking and age: No significant difference in exposure was shown between the young and the elderly as well as between males and females. Although not clinically relevant:
- a 3.7-fold decrease in mean exposure was observed in volunteers without depression who were heavy smokers (≥15 cigarettes per day);
- a decrease of 33% of agomelatine exposure has been shown in the smoker population (healthy volunteers and depressed patients smoking >5 cigarettes per day) compared to non-smoker population, suggesting that cigarette smoking could induce CYP1A2 which is involved in the metabolism of VALDOXAN (agomelatine).

CLINICAL TRIALS

Clinical trials for acute treatment of Major Depression

The efficacy and safety of agomelatine in the treatment of major depression have been studied in a clinical development programme including more than 5,800 patients of whom over 3,900 were treated with VALDOXAN (agomelatine) for between six weeks and one year.

Six placebo-controlled trials have been performed to investigate the short-term efficacy of agomelatine in major depressive disorder: two flexible dose studies and four fixed dose studies. At the end of treatment (over 6 or 8 weeks), both flexible dose studies and one of the fixed dose studies showed statistically the superiority of VALDOXAN (agomelatine) over placebo on the primary outcome criterion HAM-D total score and consistent results across secondary criteria (see Table 1). The superiority of VALDOXAN (agomelatine) over placebo was shown after two weeks of treatment.

VALDOXAN (agomelatine) did not differentiate from placebo in one study (CL3-022) where the active control fluoxetine showed assay sensitivity. In two other studies (CL3-023, 024), it was not possible to draw any conclusions because the active controls, paroxetine and fluoxetine, failed to differentiate from placebo.

Table 1 - Efficacy results in the pivotal short-term placebo-controlled studies

<table>
<thead>
<tr>
<th>Study (duration)</th>
<th>Treatment group</th>
<th>HAM-D total score</th>
<th>HAM-D responder*</th>
<th>CGI## Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Baseline mean</td>
<td>Final mean</td>
<td>Final mean</td>
</tr>
<tr>
<td>CL2-014 (8 weeks)</td>
<td>agomelatine 25mg</td>
<td>135 27.4 12.8’</td>
<td>61.5%’</td>
<td>135 4.7 2.8’</td>
</tr>
<tr>
<td></td>
<td>placebo</td>
<td>136 27.4 15.3</td>
<td>46.3%</td>
<td>136 5.0 3.3</td>
</tr>
<tr>
<td></td>
<td>paroxetine 20mg</td>
<td>144 27.3 13.1’</td>
<td>56.3%</td>
<td>- -</td>
</tr>
<tr>
<td>CL3-042 (6 weeks)</td>
<td>agomelatine 25-50mg</td>
<td>116 27.4 13.9’</td>
<td>54.3%’</td>
<td>116 4.9 3.1’</td>
</tr>
<tr>
<td></td>
<td>placebo</td>
<td>119 27.2 17.0</td>
<td>35.3%</td>
<td>119 4.9 3.6</td>
</tr>
<tr>
<td>CL3-043 (6 weeks)</td>
<td>agomelatine 25-50mg</td>
<td>106 26.5 14.1’</td>
<td>49.1%’</td>
<td>106 4.8 3.2’</td>
</tr>
<tr>
<td></td>
<td>placebo</td>
<td>105 26.7 16.5</td>
<td>34.3%</td>
<td>105 4.8 3.6</td>
</tr>
</tbody>
</table>

Notes:
* Percentage of patients with a decrease in baseline HAM-D total score ≥ 50%
CGI: Clinical Global Impression;
* Statistically significant difference from placebo.

The short term efficacy of 25-50mg/day of VALDOXAN (agomelatine) was also demonstrated in study CL3-046 which assessed the antidepressant efficacy of VALDOXAN (agomelatine) as a
secondary objective compared to sertraline (50-100 mg/day) over a double-blind treatment period of 6 weeks where male or female patients, aged between 18-60 years fulfilling DSM-IV criteria for major depressive disorder, received VALDOXAN (agomelatine) 25-50mg daily or sertraline 50-100mg daily (see Table 2).

<table>
<thead>
<tr>
<th>Study (duration)</th>
<th>Treatment group</th>
<th>HAM-D total score</th>
<th>HAM-D responder$^#$</th>
<th>CGI:Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL3-046 (6 weeks)</td>
<td>agomelatine 25-50mg</td>
<td>150</td>
<td>26.1</td>
<td>10.3*</td>
</tr>
<tr>
<td></td>
<td>sertraline 50-100mg</td>
<td>156</td>
<td>26.5</td>
<td>12.1</td>
</tr>
</tbody>
</table>

Notes: $^#$ Percentage of patients with a decrease in baseline HAM-D total score ≥50%
* Statistically significant difference in favour of VALDOXAN

The short term efficacy of VALDOXAN (agomelatine) was also shown in study CL3-045 which demonstrated the antidepressant efficacy of VALDOXAN (agomelatine) vs fluoxetine after a double-blind treatment period of 8 weeks where male or female patients, aged between 18-65 years fulfilling DSM-IV criteria for major depressive disorder, received VALDOXAN (agomelatine) 25-50mg daily or fluoxetine 20-40mg daily (see Table 3).

<table>
<thead>
<tr>
<th>Study (duration)</th>
<th>Treatment group</th>
<th>HAM-D total score</th>
<th>Superiority test$^\wedge$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Baseline W0 mean</td>
<td>Final W8 mean</td>
</tr>
<tr>
<td></td>
<td>agomelatine 25-50mg</td>
<td>247</td>
<td>28.5</td>
</tr>
<tr>
<td></td>
<td>fluoxetine 20-40mg</td>
<td>257</td>
<td>28.7</td>
</tr>
</tbody>
</table>

Notes: * Statistically significant difference in favour of VALDOXAN
$^\wedge$ a priori superiority test: two sided p-value to be compared to 0.05 following a non-inferiority test centred on a non-inferiority margin of −1.5: one-sided p-value of <0.001 compared to 0.025

Prevention of Relapse of Depression

The primary objective of study CL3-041 was to assess the efficacy of VALDOXAN (agomelatine) at flexible dose in the prevention of depressive relapse compared to placebo. In this study, 492 patients received open label treatment with VALDOXAN (agomelatine) 25mg/day for eight to ten weeks, with an increase to 50mg/day in patients who were not sufficiently improved after two weeks. Thereafter, the patients who responded to therapy (HAM-D total score ≤10) were randomised to receive treatment with VALDOXAN (agomelatine) or placebo until relapse occurred for up to 44 weeks. 338 patients participated in the double blind, long-term portion of the study: 165 were treated with VALDOXAN (agomelatine) and 174 were treated with placebo. The primary efficacy criterion was the relapse, defined as HAM-D 17-item total score ≥16, or any withdrawal for lack of efficacy during the 44-week double-blind period.

The risk over time of relapse was significantly reduced by 54.2% in the VALDOXAN (agomelatine) group compared to the placebo group in study CL3-20098-041 (see Figure 1). As is indicated in Table 4, the percentage of patients with a relapse during the 24-week double-blind period was more than two times lower in the VALDOXAN (agomelatine) group than in the placebo group.
Results over the 44-week double-blind treatment period confirm the efficacy of VALDOXAN (agomelatine) 25-50 mg to prevent depressive relapse in patients with major depressive disorder and showed the maintenance of long-term efficacy. The percentage of patients with a relapse over the whole 44-week double-blind period remained more than two times lower in the VALDOXAN (agomelatine) group than in the placebo group (see Table 5).

As shown in Figure 2, the risk over time of relapse was significantly reduced by more than half, 56.3% in the VALDOXAN (agomelatine) group compared to the placebo group.
Indications

Treatment of major depression in adults including prevention of relapse.

Contraindications

VALDOXAN (agomelatine) is contraindicated in patients:
- with a history of previous hypersensitivity to the active ingredient or any of the excipients;
- with hepatic impairment (i.e. cirrhosis or active liver disease); or
- taking potent CYP1A2 inhibitors (e.g. fluvoxamine, ciprofloxacin).

Precautions

Suicide Ideation / Suicidality

In clinical trials, VALDOXAN (agomelatine) is not associated with an increased risk of suicide ideation / suicidality.

The risk of suicide attempt is inherent in depression and may persist until significant remission occurs. This risk must be considered in all depressed patients.

Patients with depression may experience worsening of their depressive symptoms and/or the emergence of suicidal ideation and behaviours (suicidality) whether or not they are taking antidepressant medications, and this risk may persist until significant remission occurs. As
improvement may not occur during the first few weeks or more of treatment, patients should be closely monitored for clinical worsening and suicidality, especially at the beginning of a course of treatment, or at the time of dose changes, either increases or decreases.

Consideration should be given to changing the therapeutic regimen, including possibly discontinuing the medication, in patients whose depression is persistently worse or whose emergent suicidality is severe, abrupt in onset, or was not part of the patient's presenting symptoms. Patients (and caregivers of patients) should be alerted about the need to monitor for any worsening of their condition and/or the emergence of suicidal ideation/behaviour or thoughts of harming themselves and to seek medical advice immediately if these symptoms present. Patients with comorbid depression associated with other psychiatric disorders being treated with antidepressants should be similarly observed for clinical worsening and suicidality.

Pooled analyses of 24 short-term (4 to 16 weeks), placebo controlled trials of nine antidepressant medicines (SSRIs and others) in 4,400 children and adolescents with major depressive disorder (16 trials), obsessive compulsive disorder (4 trials) or other psychiatric disorders (4 trials) have revealed a greater risk of adverse events representing suicidal behaviour or thinking (suicidality) during the first few months of treatment in those receiving antidepressants. The average risk of such events in patients treated with an antidepressant was 4% compared with 2% of patients given placebo. There was considerable variation in risk among the antidepressants, but there was a tendency towards an increase for almost all antidepressants studied.

The risk of suicidality was most consistently observed in the major depressive disorder trials, but there were signals of risk arising from trials in other psychiatric indications (obsessive compulsive disorder and social anxiety disorder) as well. No suicides occurred in these trials. It is unknown whether the suicidality risk in children and adolescent patients extends to use beyond several months. The nine antidepressant medications in the pooled analyses included five SSRIs (citalopram, fluoxetine, fluvoxamine, paroxetine, sertraline) and four non-SSRs (bupropion, mirtazapine, nefazodone, venlafaxine).

A further pooled analysis of short-term placebo controlled trials of antidepressant medicines (SSRIs and others) showed the increased risk of suicidal thinking and behaviour (suicidality) during the initial treatment period (generally the first one to two months) extends to young adults (ages 18-24) with major depressive disorder (MDD) and other psychiatric disorders. These studies did not show an increase in the risk of suicidality with antidepressants compared to placebo in adults beyond age 24; there was a reduction in risk with antidepressants compared to placebo in adults aged 65 and older.

Symptoms of anxiety, agitation, panic attacks, insomnia, irritability, hostility (aggressiveness), impulsivity, akathisia (psychomotor restlessness), hypomania and mania have been reported in adults, adolescents and children being treated with antidepressants for major depressive disorder as well as for other indications, both psychiatric and non-psychiatric. Although a causal link between the emergence of such symptoms and either worsening of depression and/or emergence of suicidal impulses has not been established, there is concern that such symptoms may be precursors of emerging suicidality.

Families and caregivers of children and adolescents being treated with antidepressants for major depressive disorder or for any other condition (psychiatric or non-psychiatric) should be informed about the need to monitor these patients for the emergence of agitation, irritability, unusual changes in behaviour and other symptoms described above, as well as the emergence of suicidality, and to report such symptoms immediately to healthcare providers. It is particularly important that monitoring be undertaken during the initial few months of antidepressant treatment or at times of dose increase or decrease.

When treatment duration was considered the incidence of suicidal acts was 0.19 per 100 patient-months for VALDOXAN (agomelatine) compared with 0.24 per 100 patient-months for placebo.
Bipolar disorder / Mania / Hypomania

As with other antidepressants, VALDOXAN (agomelatine) should be used with caution in patients with history of bipolar disorder, mania or hypomania and should be discontinued if a patient develops manic symptoms.

Increased serum transaminases:

In clinical studies, elevations of serum transaminases (>3 times the upper limit of the normal range) have been observed in patients treated with VALDOXAN (agomelatine) more commonly on a 50mg dose. When VALDOXAN (agomelatine) was discontinued in these patients, the serum transaminases usually returned to normal levels.

Liver function tests should be performed in all patients: at initiation of treatment and then periodically after around three weeks, six weeks (end of acute phase), after around twelve and twenty four weeks (end of maintenance phase) and thereafter when clinically indicated.

Any patient who develops increased serum transaminases should have his/her liver function tests repeated within 48 hours. Therapy should be discontinued if the increase in serum transaminases exceeds three times the upper limit of normal and liver function tests should continue to be performed regularly until serum transaminases return to normal.

Caution should be exercised when VALDOXAN (agomelatine) is administered to patients with pretreatment elevated transaminases (i.e. between the upper limit of the normal ranges and up to ≤3 times the upper limit of the normal range) and those with hepatic injury risk factors e.g. overweight, obesity, non-alcoholic fatty liver disease, substantial alcohol intake or concomitant medications associated with risk of hepatic injury.

If any patient develops symptoms suggesting hepatic dysfunction, liver function tests should be performed. The decision whether to continue the patient on therapy with VALDOXAN (agomelatine) should be guided by clinical judgement pending laboratory evaluations. If jaundice is observed therapy should be discontinued.

Lactose intolerance

VALDOXAN (agomelatine) tablets contain lactose. Patients with rare hereditary problems of galactose intolerance, the Lapp lactase deficiency or glucose-galactose malabsorption should not take this medicine.

Alcohol

As with all antidepressants, patients should be advised to avoid alcohol consumption.

Electroconvulsive therapy (ECT)

There is no experience of concurrent use of VALDOXAN (agomelatine) with ECT. In animals VALDOXAN (agomelatine) is devoid of proconvulsant properties. Therefore, clinical consequences of concomitant ECT treatment with VALDOXAN (agomelatine) are considered to be unlikely.

Abuse potential

VALDOXAN (agomelatine) has no abuse potential. This was assessed in healthy volunteer studies on a specific visual analogue scale or the Addiction Research Centre Inventory 49 (ARCI) check-list.
Use in Pregnancy (Category B1)

Animal studies do not indicate direct or indirect harmful effects with respect to pregnancy, embryofetal development, parturition or postnatal development at systemic exposures (plasma AUC) of 100-fold or greater the human exposure at the maximal recommended clinical dose. Agomelatine and/or its metabolites passes into the placenta and foetuses of pregnant rats. No clinical data on exposed pregnancies are available. Caution should be exercised when prescribing to pregnant women.

Use in Lactation

It is not known whether agomelatine is excreted into human milk. Agomelatine and/or its metabolites were excreted in the milk of lactating rats. There were no adverse effects on offspring following oral administration of agomelatine to rats from prior to mating until weaning, with systemic exposures (plasma AUC) of 100-fold human exposure at the maximal recommended clinical dose. The effects of VALDOXAN (agomelatine) on the nursing infant have not been established. If treatment with VALDOXAN (agomelatine) is considered necessary, breastfeeding should be discontinued.

Paediatric Use

Use of VALDOXAN (agomelatine) in children and adolescents (under 18 years of age) is not recommended as safety and efficacy have not been established in this age group.

In clinical trials among children and adolescents treated with other antidepressants, suicide-related behaviour (suicide attempt and suicidal thoughts), and hostility (predominantly aggression, oppositional behaviour and anger) were more frequently observed compared to those treated with placebo.

Use in Elderly Patients

No adjustment in the usual dose is recommended for elderly patients solely because of their age.

VALDOXAN (agomelatine) should not be used for the treatment of major depressive episodes in elderly patients with dementia since the safety and efficacy of VALDOXAN (agomelatine) have not been established in these patients.

Carcinogenicity

Oral lifetime carcinogenicity studies with agomelatine were conducted in mice and rats. Male and female mice showed increased incidences of hepatocellular adenomas and hepatocellular carcinomas at systemic exposures (plasma AUC) about 15-fold human exposure at the maximal recommended clinical dose; the no-effect exposure was about 4-fold clinical exposure. Male rats showed an increased incidence of hepatocellular carcinomas at systemic exposures (plasma AUC) about 45-fold human exposure at the maximal recommended clinical dose; the no-effect exposure was about 8-fold clinical exposure. These effects were associated with liver enzyme induction in these species and are unlikely to be relevant to humans. In male and female rats, the frequency of benign mammary fibroadenomas was increased at high systemic exposures (30-fold or greater the exposure at the maximal recommended clinical dose) but remained within the historical control range. Malignant mammary tumours were not observed.

Genotoxicity

Based on results from a standard battery of in vitro and in vivo assays, agomelatine is not considered to have genotoxic potential in humans receiving the maximum proposed clinical dose.
Effects on fertility

Oral reproductive toxicity studies with agomelatine in rats showed no effect on fertility at plasma exposures of 60-100 fold human exposure at the maximal recommended clinical dose.

INTERACTIONS WITH OTHER MEDICINES

Potential interactions affecting VALDOXAN (agomelatine)

VALDOXAN (agomelatine) is metabolised mainly by cytochromes CYP1A2 (90%) and CYP2C9/19 (10%). Drugs that interact with these isoenzymes may decrease or increase the bioavailability of VALDOXAN (agomelatine).

Co-administration of VALDOXAN (agomelatine) with potent CYP1A2 inhibitors such as fluvoxamine and ciprofloxacin is contraindicated. Fluvoxamine, a potent CYP1A2 and moderate CYP2C9 inhibitor, has been shown to markedly inhibit the metabolism of VALDOXAN (agomelatine) resulting in a large increase in agomelatine exposure.

Combination of VALDOXAN (agomelatine) with oestrogens (moderate CYP1A2 inhibitors) results in a several fold increased exposure of VALDOXAN (agomelatine). While there was no specific safety signal in the 800 patients treated in combination with oestrogens, caution should be exercised when prescribing VALDOXAN (agomelatine) with other moderate CYP1A2 inhibitors (e.g. propranolol) until more experience has been gained.

Fluconazole, a potent CYP2C9 and CYP2C19 inhibitor, has been shown not to affect the pharmacokinetics of VALDOXAN (agomelatine).

Table 6 - Summary of CYP1A2 and CYP2C9/C19 interactions from agomelatine clinical studies

<table>
<thead>
<tr>
<th>Contraindicated:</th>
<th>Caution should be taken until more experience has been gained:</th>
<th>No interaction:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potent CYP1A2 inhibitors (e.g. fluvoxamine and ciprofloxacin)</td>
<td>Moderate CYP1A2 inhibitors (e.g. propranolol)</td>
<td>Potent CYP2C9/CYP2C19 inhibitors (e.g. fluconazole)</td>
</tr>
</tbody>
</table>

As the decrease in VALDOXAN (agomelatine) exposure in cigarette smokers due to induction of CYP1A2 is not clinically relevant, no dosage adjustment is necessary because a patient is a cigarette smoker (see Pharmacokinetics section).

Use with other antidepressants

VALDOXAN (agomelatine) should not be combined with fluvoxamine as fluvoxamine is a potent inhibitor of the metabolism of VALDOXAN (agomelatine) (see CONTRAINDICATIONS section). Caution should be taken when administering VALDOXAN (agomelatine) with other antidepressants as the safety and efficacy of VALDOXAN (agomelatine) in combination with other antidepressants has not been examined.

There is no pharmacokinetic or pharmacodynamic interaction between VALDOXAN (agomelatine) and paroxetine.

Lithium

There is no pharmacokinetic or pharmacodynamic interaction between VALDOXAN (agomelatine) and lithium.
Benzodiazepines (lorazepam)

There is no pharmacokinetic or pharmacodynamic interaction between VALDOXAN (agomelatine) and lorazepam.

Potential for VALDOXAN (agomelatine) to affect other medicinal products

VALDOXAN (agomelatine) inhibits neither CYP1A2 in vivo nor the other CYP450 in vitro and does not induce CYP450 isoenzymes in vivo. Therefore, VALDOXAN (agomelatine) will not modify exposure to drugs metabolised by CYP450.

In healthy volunteers VALDOXAN (agomelatine) did not modify the kinetics of theophylline, a CYP1A2 substrate.

Drugs highly bound to plasma protein

VALDOXAN (agomelatine) does not modify free concentrations of drugs highly bound to plasma proteins (eg. zolpidem, diazepam, sertraline, warfarin, oestrogen and salicylic acid) or vice versa.

Effects on ability to drive and use machines

No studies on the effects on the ability to drive and use machines have been performed. While clinical pharmacodynamic studies have shown that VALDOXAN (agomelatine) treatment does not impair cognitive or psychomotor function in healthy volunteers, dizziness and somnolence were reported during clinical trials. As with all psychoactive drugs, patients should be cautioned about their ability to drive a car or operate machinery.

ADVERSE EFFECTS

In clinical trials, over 3,900 depressed patients have received VALDOXAN (agomelatine).

In clinical trials dose escalation was associated with an increase in liver function abnormalities. The incidence of ALT and/or AST elevations >3xULN according to agomelatine dose in clinical trials was: 0.6% on agomelatine 1-10mg (4/679 patients), 1.0% on agomelatine 25mg (26/2506 patients), 1.4% on agomelatine 50mg (11/791 patients) and 3.5% on agomelatine 100mg (2/57 patients), compared to 0.7% in the placebo group (7/969 patients) – (see PRECAUTIONS section). Whilst 1-10mg and 100mg dosages were included in dose ranging studies, these are not within the approved therapeutic dose range of 25mg to 50mg (see DOSAGE AND ADMINISTRATION section).

Depressed patients display a number of symptoms that are associated with the illness itself. It is therefore sometimes difficult to ascertain which symptoms are a result of the illness itself and which are a result of treatment with VALDOXAN (agomelatine).

Adverse reactions were usually mild or moderate and occurred within the first two weeks of treatment. The most common adverse reactions were nausea, dizziness and headache, which were also commonly reported in the placebo treatment group. These adverse reactions were usually transient and did not generally lead to cessation of therapy (see Table 7 where all adverse events >1% are listed including adverse reactions identified with an asterix *).
Table 7: Emergent Adverse Events with incidence >1% in the agomelatine 25/50mg treatment group of the Short-term double blind placebo controlled MDD Set

<table>
<thead>
<tr>
<th>Preferred term</th>
<th>Agomelatine 25/50mg N=1120 PM=1486.1 (%)</th>
<th>Placebo N=998 PM=1337.6 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nervous system disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headache*</td>
<td>14.1</td>
<td>14.1</td>
</tr>
<tr>
<td>Dizziness*</td>
<td>5.5</td>
<td>3.1</td>
</tr>
<tr>
<td>Somnolence*</td>
<td>2.9</td>
<td>2.3</td>
</tr>
<tr>
<td>Migraine*</td>
<td>1.2</td>
<td>0.4</td>
</tr>
<tr>
<td>Tremor</td>
<td>1.0</td>
<td>0.8</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nausea*</td>
<td>7.7</td>
<td>7.1</td>
</tr>
<tr>
<td>Dry mouth</td>
<td>3.5</td>
<td>3.3</td>
</tr>
<tr>
<td>Diarrhoea*</td>
<td>3.1</td>
<td>2.6</td>
</tr>
<tr>
<td>Abdominal pain*</td>
<td>2.4</td>
<td>1.3</td>
</tr>
<tr>
<td>Constipation*</td>
<td>1.8</td>
<td>2.1</td>
</tr>
<tr>
<td>Dyspepsia</td>
<td>1.3</td>
<td>1.1</td>
</tr>
<tr>
<td>Infections and infestations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Influenza</td>
<td>2.3</td>
<td>2.2</td>
</tr>
<tr>
<td>Nasopharyngitis</td>
<td>2.1</td>
<td>2.3</td>
</tr>
<tr>
<td>Psychiatric disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insomnia*</td>
<td>2.4</td>
<td>2.6</td>
</tr>
<tr>
<td>Anxiety*</td>
<td>2.0</td>
<td>1.2</td>
</tr>
<tr>
<td>Depression</td>
<td>1.3</td>
<td>1.2</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatigue*</td>
<td>2.6</td>
<td>2.0</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>1.3</td>
<td>0.7</td>
</tr>
<tr>
<td>Hyperhidrosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>Back pain*</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ear and labyrinth disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertigo</td>
<td>1.1</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Notes: PM = total number of patient-months in a given treatment group, N = number of patients, *= adverse reactions

The following additional adverse reactions were reported during clinical trials of agomelatine in depressed patients:

Adverse reactions are listed below using the following convention: very common (≥1/10); common (≥1/100 to <1/10); uncommon (≥1/1,000 to <1/100); rare (≥1/10,000 to <1/1,000); very rare (<1/10,000), not known (cannot be estimated from the available data) and have not been corrected for placebo. The frequencies are shown as: (agomelatine vs placebo).

Nervous system disorders:
Uncommon: paraesthesia (0.9% vs 0.1%).

Eye disorders:
Uncommon: blurred vision (0.6% vs 0%).
Skin and subcutaneous tissue disorders:
Uncommon: eczema (0.2% vs 0.1%)
Rare: erythematous rash (0.1% vs 0%)

Hepato-biliary disorders (in the overall safety database; N=3,297):
Common: increases (>3 times the upper limit of the normal range) in ALT and/or AST (1.1% vs 0.7%)
Rare: hepatitis (0.03% vs 0%)

There were no differences in the nature and frequency of adverse events between treatment groups regardless of gender or age.

The percentage of patients who spontaneously reported sexual side effects in the short-term placebo-controlled studies in depression was similar for VALDOXAN (agomelatine) and placebo (1.2% and 1.1% respectively).

VALDOXAN (agomelatine) had no effect on body weight in clinical and non-clinical studies.

The following reactions have been reported in post-marketing experience:

Skin and subcutaneous tissue disorders:
Uncommon: pruritus

Psychiatric disorders (see PRECAUTIONS section):
Uncommon: agitation and related symptoms (such as irritability and restlessness), aggression, nightmares, abnormal dreams
Rare: mania/hypomania (these symptoms may also be due to the underlying disease) (see PRECAUTIONS), hallucinations
Frequency unknown: suicidal thoughts or behaviour (see PRECAUTIONS)

Hepato-biliary disorders:
Rare: increased gamma-glutamyltransferase (GGT) (>3 times the upper limit of the normal range), increased alkaline phosphatase (>3 times the upper limit of the normal range)

DOSAGE AND ADMINISTRATION

The recommended daily dose is one 25mg tablet taken orally at bedtime. After two weeks of treatment, if there is no improvement in symptoms, the dose may be increased to 50mg once daily, taken as a single dose of two tablets at bedtime. The maximum recommended dose should not be exceeded.

Liver function tests should be performed in all patients: at initiation of treatment, and then periodically after around three weeks, six weeks (end of acute phase), twelve weeks and twenty four weeks (end of maintenance phase) and thereafter when clinically indicated (see PRECAUTIONS section).

Patients with depression should be treated for a sufficient period of at least 6 months to ensure that they are free of symptoms.

VALDOXAN (agomelatine) tablets may be taken with or without food.

* Frequency estimated from clinical trials for adverse events detected from spontaneous reports
Children and adolescents:

VALDOXAN (agomelatine) is not recommended for use in children and adolescents below 18 years of age due to a lack of data on safety and efficacy (see PRECAUTIONS section).

Elderly Patients

No adjustment in the usual dose is recommended for elderly patients solely because of their age.

Only limited clinical data is available on the use of VALDOXAN (agomelatine) in elderly patients ≥65 years old with major depressive episodes. Therefore, caution should be exercised when prescribing VALDOXAN (agomelatine) to these patients (see PRECAUTIONS section).

Patients with renal impairment

No relevant modification in agomelatine pharmacokinetic parameters in patients with severe renal impairment has been observed. However, as only limited clinical data on the use of VALDOXAN (agomelatine) in depressed patients with severe or moderate renal impairment with major depressive episodes is available, caution should be exercised when prescribing VALDOXAN (agomelatine) to these patients.

Patients with hepatic impairment

VALDOXAN (agomelatine) is contraindicated in patients with hepatic impairment (see CONTRAINDICATIONS section).

Treatment discontinuation

No dosage tapering is needed on treatment discontinuation, as VALDOXAN (agomelatine) does not induce discontinuation symptoms after abrupt treatment cessation.

OVERDOSAGE

There is limited experience with agomelatine overdose.

Experience with agomelatine in overdose has indicated that epigastralgia, somnolence, fatigue, agitation, anxiety, tension, dizziness, cyanosis or malaise have been reported. One person having ingested 2450mg of agomelatine, recovered spontaneously without cardiovascular and biological abnormalities.

No specific antidotes for agomelatine are known. Management of overdose should consist of treatment of clinical symptoms and routine monitoring. Medical follow-up in a specialised environment is recommended.

PRESENTATION AND STORAGE CONDITIONS

Orange-yellow, oblong, film-coated tablet with a blue imprint of on one face. Supplied in blister packs of 28 and 56 tablets.

Store in a dry place below 30°C.

The 56 tablets pack size is not distributed in Australia
NAME AND ADDRESS OF SPONSOR

SERVIER LABORATORIES (AUST) PTY LTD
8 Cato Street, Hawthorn,
Victoria 3122, Australia
ABN 54 004 838 500

POISONS SCHEDULE

S4

DATE OF FIRST INCLUSION IN THE AUSTRALIAN REGISTER OF THERAPEUTIC GOODS
(THE ARTG)

09 August, 2010

DATE OF MOST RECENT AMENDMENT

20 April, 2012